콘텐츠로 건너뛰기
Merck
  • Peptidoglycan-Mediated Bone Marrow Autonomic Neuropathy Impairs Hematopoietic Stem/Progenitor Cells via a NOD1-Dependent Pathway in db/db Mice.

Peptidoglycan-Mediated Bone Marrow Autonomic Neuropathy Impairs Hematopoietic Stem/Progenitor Cells via a NOD1-Dependent Pathway in db/db Mice.

Stem cells international (2022-08-16)
Jing Wu, Binghan Zhang, Shengbing Li, Wenwen Chen, Jinning Mao, Ke Li, Dongfang Liu, Yaqian Duan
초록

Impairment of bone marrow-derived hematopoietic stem/progenitor cells (HSPCs) contributes to the progression of vascular complications in subjects with diabetes. Very small amounts of bacterial-derived pathogen-associated molecular patterns (PAMPs) establish the bone marrow cell pool. We hypothesize that alteration of the PAMP peptidoglycan (PGN) exacerbates HSPC dysfunction in diabetes. We observed increased PGN infiltration in the bone marrow of diabetic mice. Exogenous administration of PGN selectively reduced the number of long-term repopulating hematopoietic stem cells (LT-HSCs), accompanied by impaired vasoreparative functions in db/db mouse bone marrow. We further revealed that bone marrow denervation contributed to PGN-associated HSPC dysfunction. Inhibition of NOD1 ameliorated PGN-induced bone marrow autonomic neuropathy, which significantly rejuvenated the HSPC pools and functions in vivo. These data reveal for the first time that PGN, as a critical factor on the gut-bone marrow axis, promotes bone marrow denervation and HSPC modulation in the context of diabetes.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
QCM Chemotaxis Cell Migration Assay, 96-well (5 µm), fluorimetric, The QCM 5 um 96-well Migration Assay utilizes a 5 um pore size, which is appropriate for studying monocyte/macrophage migration.
Roche
Cell Proliferation ELISA, BrdU (colorimetric), sufficient for ≤1,000 tests