콘텐츠로 건너뛰기
Merck
  • Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation.

Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation.

The Journal of clinical investigation (2021-12-16)
Xue Gong, Miao Tian, Nian Cao, Peili Yang, Zaicheng Xu, Shuo Zheng, Qiao Liao, Caiyu Chen, Cindy Zeng, Pedro A Jose, Da-Zhi Wang, Zhao Jian, Yingbin Xiao, Ding-Sheng Jiang, Xiang Wei, Bing Zhang, Yibin Wang, Ken Chen, Gengze Wu, Chunyu Zeng
초록

Circular RNAs (circRNAs) have been recently recognized as playing a role in the pathogenesis of vascular remodeling-related diseases by modulating the functions of miRNAs. However, the interplay between circRNAs and proteins during vascular remodeling remains poorly understood. Here, we investigated a previously identified circRNA, circEsyt2, whose expression is known to be upregulated during vascular remodeling. Loss- and gain-of‑function mutation analyses in vascular smooth muscle cells (VSMCs) revealed that circEsyt2 enhanced cell proliferation and migration and inhibited apoptosis and differentiation. Furthermore, the silencing of circEsyt2 in vivo reduced neointima formation, while circEsyt2 overexpression enhanced neointimal hyperplasia in the injured carotid artery, confirming its role in vascular remodeling. Using unbiased protein-RNA screening and molecular validation, circEsyt2 was found to directly interact with polyC-binding protein 1 (PCBP1), an RNA splicing factor, and regulate PCBP1 intracellular localization. Additionally, circEsyt2 silencing substantially enhanced p53β splicing via the PCBP1-U2AF65 interaction, leading to the altered expression of p53 target genes (cyclin D1, p21, PUMA, and NOXA) and the decreased proliferation of VSMCs. Thus, we identified a potentially novel circRNA that regulated vascular remodeling, via altered RNA splicing, in atherosclerotic mouse models.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Anti-Noxa Antibody, a.a. 1-16, serum, Chemicon®