콘텐츠로 건너뛰기
Merck
  • The road from Santa Rosalia: a faster tempo of evolution in tropical climates.

The road from Santa Rosalia: a faster tempo of evolution in tropical climates.

Proceedings of the National Academy of Sciences of the United States of America (2006-05-05)
Shane Wright, Jeannette Keeling, Len Gillman
초록

Using an appropriately designed and replicated study of a latitudinal influence on rates of evolution, we test the prediction by K. Rohde [(1992) Oikos 65, 514-527] that the tempo of molecular evolution in the tropics is greater than at higher latitudes. Consistent with this prediction we found tropical plant species had more than twice the rate of molecular evolution as closely related temperate congeners. Rohde's climate-speciation hypothesis constitutes one explanation for the cause of that relationship. This hypothesis suggests that mutagenesis occurs more frequently as productivity and metabolic rates increase toward the equator. More rapid mutagenesis was then proposed as the mechanism that increases evolutionary tempo and rates of speciation. A second possible explanation is that faster rates of molecular evolution result from higher tropical speciation rates [e.g., Bromham, L. & Cardillo, M. (2003) J. Evol. Biol. 16, 200-207]. However, we found the relationship continued to hold for genera with the same number of, or more, species in temperate latitudes. This finding suggests that greater rates of speciation in the tropics do not cause higher rates of molecular evolution. A third explanation is that more rapid genetic drift might have occurred in smaller tropical species populations [Stevens, G. C. (1989) Am. Nat. 133, 240-256]. However, we targeted common species to limit the influence of genetic drift, and many of the tropical species we used, despite occurring in abundant populations, had much higher rates of molecular evolution. Nonetheless, this issue is not completely resolved by that precaution and requires further examination.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Extract-N-Amp Plant PCR Kit, sufficient for 100 extractions, sufficient for 100 amplifications