콘텐츠로 건너뛰기
Merck
  • GGA3 interacts with L-type prostaglandin D synthase and regulates the recycling and signaling of the DP1 receptor for prostaglandin D2 in a Rab4-dependent mechanism.

GGA3 interacts with L-type prostaglandin D synthase and regulates the recycling and signaling of the DP1 receptor for prostaglandin D2 in a Rab4-dependent mechanism.

Cellular signalling (2020-04-26)
Louis Fréchette, Chantal Binda, Samuel Génier, Jade Degrandmaison, Marilou Boisvert, Jean-Luc Parent
초록

Mechanisms controlling the recycling of G protein-coupled receptors (GPCRs) remain largely unclear. We report that GGA3 (Golgi-associated, γ adaptin ear containing, ADP-ribosylation factor-binding protein 3) regulates the recycling and signaling of the PGD2 receptor DP1 through a new mechanism. An endogenous interaction between DP1 and GGA3 was detected by co-immunoprecipitation in HeLa cells. The interaction was promoted by DP1 agonist stimulation, which was supported by increased DP1-GGA3 colocalization in confocal microscopy. Pulldown assays showed that GGA3 interacts with the intracellular loop 2 and C-terminus of DP1, whereas the receptor interacts with the VHS domain of GGA3. The Arf-binding deficient GGA3 N194A mutant had the same effect as wild-type GGA3 on DP1 trafficking, suggesting a new mechanism for GGA3 in recycling. Depletion of Rab4 inhibited the GGA3 effect on DP1 recycling, revealing a Rab4-dependent mechanism. Interestingly, depletion of L-PGDS (L-type prostaglandin synthase, the enzyme that produces the agonist for DP1) impaired the ability of GGA3 to mediate DP1 recycling, while GGA3 knockdown prevented L-PGDS from promoting DP1 recycling, indicating that both proteins function interdependently. A novel interaction was observed between co-immunoprecipitated endogenous L-PGDS and GGA3 proteins in HeLa cells, and in vitro using purified recombinant proteins. Redistribution of L-PGDS towards GGA3- and Rab4-positive vesicles was induced by DP1 activation. Silencing of GGA3 inhibited ERK1/2 activation following DP1 stimulation. Altogether, our data reveal a novel function for GGA3, in a newly described association with L-PGDS, in the recycling and signaling of a GPCR, namely DP1.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
MISSION® esiRNA, targeting human HPGDS