์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ
Merck

Regulation of decidualization in human endometrial stromal cells through exchange protein directly activated by cyclic AMP (Epac).

Placenta (2013-01-29)
K Kusama, M Yoshie, K Tamura, Y Kodaka, A Hirata, T Sakurai, H Bai, K Imakawa, H Nishi, K Isaka, T Nagai, T Nagao, E Tachikawa
์ดˆ๋ก

Human endometrial stromal cells (ESCs) undergo differentiation during the decidualization process. Decidualization is characterized by their enhanced production of IGF binding protein-1 (IGFBP-1), prolactin (PRL), and the forkhead transcriptional factor FOXO1, and transformation into more rounded cells, during the secretory phase of the menstrual cycle and subsequent pregnancy. Protein kinase A (PKA)-mediated cAMP signaling is crucial for this process. The present study was undertaken to examine the involvement of a mediator of cAMP signaling, exchange protein directly activated by cAMP (Epac), in decidualization of cultured ESCs. Treatment of ESCs with the Epac-selective cAMP analog 8-CPT-2-OMe-cAMP (CPT) had no effect on IGFBP-1, PRL, and FOXO1 mRNA expression. However, CPT potentiated IGFBP-1 and PRL expression stimulated by the PKA-selective cAMP analog N(6)-Phe-cAMP (Phe) and activated Rap1, a downstream regulator of Epac signaling. Knock-down of Epac1, Epac2, or Rap1 significantly inhibited the Phe- or Phe/CPT-induced increase in IGFBP-1 and PRL expression, as well as Rap1 activation. Furthermore, CPT enhanced IGFBP-1 and PRL expression and the morphological differentiation induced by ovarian steroids, whereas Epac1, Epac2, or Rap1 knock-down suppressed these events. These data provide evidence for the involvement of the Epac/Rap1 signaling pathway in cAMP-mediated decidualization of human ESCs.

MATERIALS
์ œํ’ˆ ๋ฒˆํ˜ธ
๋ธŒ๋žœ๋“œ
์ œํ’ˆ ์„ค๋ช…

Sigma-Aldrich
Anti-Rap1 Antibody, Upstateยฎ, from rabbit