콘텐츠로 건너뛰기
Merck
  • Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase CHIP.

Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase CHIP.

The Journal of biological chemistry (2010-10-16)
Vikram Narayan, Emmanuelle Pion, Vivien Landré, Petr Müller, Kathryn L Ball
초록

Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20-40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106-140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or "docking" of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
Anti-c-Myc antibody produced in rabbit, ~0.5 mg/mL, affinity isolated antibody, buffered aqueous solution