콘텐츠로 건너뛰기
Merck
  • Maltol Mitigates Thioacetamide-induced Liver Fibrosis through TGF-β1-mediated Activation of PI3K/Akt Signaling Pathway.

Maltol Mitigates Thioacetamide-induced Liver Fibrosis through TGF-β1-mediated Activation of PI3K/Akt Signaling Pathway.

Journal of agricultural and food chemistry (2019-01-16)
Xiao-Jie Mi, Jin-Gang Hou, Shuang Jiang, Zhi Liu, Shan Tang, Xiang-Xiang Liu, Ying-Ping Wang, Chen Chen, Zi Wang, Wei Li
초록

Our previous study has confirmed that maltol can attenuate alcohol-induced acute hepatic damage and prevent oxidative stress in mice. Therefore, maltol might have the capacity to improve thioacetamide (TAA)-induced liver fibrosis. The purpose of this work was to explore the antifibrotic efficacy and underlying mechanisms of maltol for TAA-treated mice. Progressive liver fibrosis was established with a dose-escalating protocol in which the mice received TAA intraperitoneal three times a week for a total duration of 9 weeks. The injection doses of TAA were 50 mg/kg for the first week, 100 mg/kg for the second and third weeks, and 150 mg/kg for the rest of the injections. Maltol with doses of 50 and 100 mg/kg was given by gavage after 4 weeks of intraperitoneal injection of TAA, respectively, once daily for 5 weeks. Results indicated that TAA intraperitoneal injection significantly increased serum activities of alanine aminotransferase (ALT) (52.93 ± 13.21 U/L vs 10.22 ± 3.36 U/L) and aspartate aminotransferase (AST) (67.58 ± 25.84 U/L vs 39.34 ± 3.89 U/L); these elevations were significantly diminished by pretreatment with maltol. Additionally, maltol ameliorated TAA-induced oxidative stress with attenuation in MDA ( p < 0.05 or p < 0.01) content; evident elevation in the GSH levels, GSH/GSSG ratio ( p < 0.05 or p < 0.01), and superoxide dismutase (SOD) ( p < 0.01); and restored liver histology accompanied by a decrease of α-smooth muscle actin (α-SMA) expression. Furthermore, maltol significantly suppressed the transforming growth factor-β1 (TGF-β1) expression and the PI3K/Akt pathway. This study suggested that maltol alleviated experimental liver fibrosis by suppressing the activation of HSCs and inducing apoptosis of activated HSCs through TGF-β1-mediated PI3K/Akt signaling pathway. These findings further clearly suggested that maltol is a potent therapeutic candidate for the alleviation of liver fibrosis.