콘텐츠로 건너뛰기
Merck
  • Developmental changes of CaMKII localization, activity and function during postembryonic CNS remodelling in Manduca sexta.

Developmental changes of CaMKII localization, activity and function during postembryonic CNS remodelling in Manduca sexta.

The European journal of neuroscience (2006-01-20)
P Burkert, C Duch
초록

Insect metamorphosis is a compelling example of postembryonic remodelling of neuronal structure and synaptic connectivity as larval and adult behaviours place distinct demands on the CNS. Holometabolous insects such as the moth Manduca sexta have long served as suitable models for the study of steroid effects on CNS remodelling, but activity and calcium-dependent mechanisms have been found to act in concert with hormonal signals. This study examines developmental changes in the localization and the activational state of CaMKII during postembryonic Manduca CNS remodelling. Western blotting, CaMKII purification and autophosphorylation with gamma(32)P-ATP indicate that the lepidopteran CNS may contain only one CaMKII isoform. In situ immunohistochemistry reveals developmental changes in the expression patterns of CaMKII in different types of thoracic neurons and in different neuronal compartments. Early pupal life is characterized by an increase in postsynaptic CaMKII localization, which coincides with a developmental increase in CaMKII activation. Both events correlate temporally with motoneuron dendritic filopodia collapse and rapid synaptogenesis, indicating a possible functional role for CaMKII for the postembryonic development of invertebrate motor circuitry. Substrate phosphorylation assays demonstrate that CaMKII activity in the ventral nerve cord reflects changes in calcium influx through voltage-activated channels as occurring in vivo during normal development.