콘텐츠로 건너뛰기
Merck
  • Nitric oxide/cyclic guanosine monophosphate-mediated growth cone collapse of dentate granule cells.

Nitric oxide/cyclic guanosine monophosphate-mediated growth cone collapse of dentate granule cells.

Neuroreport (2006-04-11)
Ryuji X Yamada, Norio Matsuki, Yuji Ikegaya
초록

Controlling axon and dendrite elongation is critical in developing precise neural circuits. Using isolated cultures of dentate granule neurons, we established an experimental system that can simultaneously monitor the behaviors of axonal and dendritic outgrowth. Our previous study shows that axons and dendrites respond differentially to manipulated cyclic adenosine monophosphate signaling, but we report here that cyclic guanosine monophosphate exerts similar effects on axons and dendrites; that is, both axonal and dendritic growth cones collapsed after activation of cyclic guanosine monophosphate signaling. In addition, nitric oxide donor-induced growth-cone collapse was prevented by the inhibition of cyclic guanosine monophosphate signaling, and this effect again did not differ between axons and dendrites. Thus, unlike cyclic adenosine monophosphate, cyclic guanosine monophosphate modulates extending axons and dendrites in a similar manner.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Anti-Tau-1 Antibody, clone PC1C6, clone PC1C6, Chemicon®, from mouse