Skip to Content
Merck
  • The control of reactive oxygen species production by SHP-1 in oligodendrocytes.

The control of reactive oxygen species production by SHP-1 in oligodendrocytes.

Glia (2015-04-29)
Ross C Gruber, Daria LaRocca, Scott B Minchenberg, George P Christophi, Chad A Hudson, Alex K Ray, Bridget Shafit-Zagardo, Paul T Massa
ABSTRACT

We have previously described reduced myelination and corresponding myelin basic protein (MBP) expression in the central nervous system of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) deficient motheaten (me/me) mice compared with normal littermate controls. Deficiency in myelin and MBP expression in both brains and spinal cords of motheaten mice correlated with reduced MBP mRNA expression levels in vivo and in purified oligodendrocytes in vitro. Therefore, SHP-1 activity seems to be a critical regulator of oligodendrocyte gene expression and function. Consistent with this role, this study demonstrates that oligodendrocytes of motheaten mice and SHP-1-depleted N20.1 cells produce higher levels of reactive oxygen species (ROS) and exhibit corresponding markers of increased oxidative stress. In agreement with these findings, we demonstrate that increased production of ROS coincides with ROS-induced signaling pathways known to affect myelin gene expression in oligodendrocytes. Antioxidant treatment of SHP-1-deficient oligodendrocytes reversed the pathological changes in these cells, with increased myelin protein gene expression and decreased expression of nuclear factor (erythroid-2)-related factor 2 (Nrf2) responsive gene, heme oxygenase-1 (HO-1). Furthermore, we demonstrate that SHP-1 is expressed in human white matter oligodendrocytes, and there is a subset of multiple sclerosis subjects that demonstrate a deficiency of SHP-1 in normal-appearing white matter. These studies reveal critical pathways controlled by SHP-1 in oligodendrocytes that relate to susceptibility of SHP-1-deficient mice to both developmental defects in myelination and to inflammatory demyelinating diseases.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-tert-Butyl-4-hydroxyanisole, ≥98% (sum of isomers, GC), ≤10% 2-BHA basis (GC)
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Guaiacol, natural, ≥99%, FG
Sigma-Aldrich
2-Methylbutane, anhydrous, ≥99%
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Guaiacol, oxidation indicator
Sigma-Aldrich
2-Thiobarbituric acid, ≥98%
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Sirpa
Sigma-Aldrich
MISSION® esiRNA, targeting human PTPN6
Sigma-Aldrich
Guaiacol, SAJ first grade, ≥98.0%
Sigma-Aldrich
2-Methylbutane, SAJ special grade
Sigma-Aldrich
Hydrogen peroxide solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
2-Methylbutane, SAJ first grade, ≥99.0%
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
MISSION® esiRNA, targeting human NR0B2
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Ptpn6
Sigma-Aldrich
MISSION® esiRNA, targeting human SIRPA