Skip to Content
Merck
  • Simultaneous determination of acrylamide, asparagine and glucose in food using short chain methyl imidazolium ionic liquid based ultrasonic assisted extraction coupled with analyte focusing by ionic liquid micelle collapse capillary electrophoresis.

Simultaneous determination of acrylamide, asparagine and glucose in food using short chain methyl imidazolium ionic liquid based ultrasonic assisted extraction coupled with analyte focusing by ionic liquid micelle collapse capillary electrophoresis.

Food chemistry (2015-06-05)
Deia Abd El-Hady, Hassan M Albishri
ABSTRACT

Acrylamide (AA) is a known lethal neurotoxin and carcinogen. AA is formed in foods during the browning process by the Maillard reaction of glucose (GL) with asparagine (AS). For the first time, the simultaneous online preconcentration and separation of AA, AS and GL using analyte focusing by ionic liquid micelle collapse capillary electrophoresis (AFILMC) was presented. Samples were prepared in a 1-butyl-3-methylimidazolium bromide (BMIMBr) micellar matrix with a conductivity 4 times greater than that of the running buffer (12.5 mmol L(-1) phosphate buffer at pH 8.5). Samples were hydrodynamically injected into a fused silica capillary at 25.0 mbar for 25.0 s. Separations were performed by applying a voltage of 25.0 kV and a detection at 200.0 nm. To sufficiently reduce BMIMBr adsorption on the interior surface of capillary, an appropriate rinsing procedure by hydrochloric acid and water was optimized. AFILMC measurements of analytes within the concentration range of 0.05-10.0 μmol L(-1) achieved adequate reproducibility and accuracy with RSD 1.14-3.42% (n=15) and recovery 98.0-110.0%, respectively. Limits of detections were 0.71 ng g(-1) AA, 1.06 ng g(-1) AS and 27.02 ng g(-1) GL with linearity ranged between 2.2 and 1800 ng g(-1). The coupling of AFILMC with IL based ultrasonic assisted extraction (ILUAE) was successfully applied to the efficient extraction and determination of AA, AS and GL in bread samples. The structure of ILs has significant effects on the extraction efficiency of analytes. The optimal extraction efficiency (97.8%) was achieved by an aqueous extraction with 4:14 ratio of sample: 3.0 mol L(-1) BMIMBr followed by sonication at 35 °C. The proposed combination of ILUAE and AFILMC was simple, ecofriendly, reliable and inexpensive to analyze a toxic compound and its precursors in bread which is applicable to food safety.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium bromide, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Potassium bromide, anhydrous, powder, 99.999% trace metals basis
Sigma-Aldrich
Potassium bromide, anhydrous, powder, 99.95% trace metals basis
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99% (HPLC), powder
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Potassium bromide, BioXtra, ≥99.0%
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Sodium hydroxide solution, 0.2 M
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Acrylamide, for molecular biology, ≥99% (HPLC)
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Acrylamide, ≥98.0%
Sigma-Aldrich
Sodium hydroxide solution, 4 M
Sigma-Aldrich
Sodium hydroxide solution, 7 M
Sigma-Aldrich
Potassium bromide, JIS special grade, 99.0-100.2%
Sigma-Aldrich
Sodium hydroxide solution, 1 M
Sigma-Aldrich
Acrylamide, ≥99.9%
Sigma-Aldrich
Sodium hydroxide solution, 6 M
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid solution, 2 M