- Hydrochloride salt co-crystals: preparation, characterization and physicochemical studies.
Hydrochloride salt co-crystals: preparation, characterization and physicochemical studies.
Co-crystallization approach for modification of physicochemical properties of hydrochloride salt is presented. The objective of this investigation was to study the effect of co-crystallization with different co-crystal formers on physicochemical properties of fluoxetine hydrochloride (FH). FH was screened for co-crystallization with a series of carboxylic acid co-formers by slow evaporation method. Photomicrographs and melting points of crystalline phases were determined. The co-crystals were characterized by FTIR, DSC and PXRD methods. Solubility of co-crystals was determined in water and buffer solutions. Powder and intrinsic dissolution profiles were assessed for co-crystals. Physical mixtures of drug and co-formers were used for comparisons at characterizations and physicochemical properties evaluation stages. Four co-crystals of FH viz. Fluoxetine hydrochloride-maleic acid (FH-MA), Fluoxetine hydrochloride-glutaric acid (FH-GA), Fluoxetine hydrochloride-L-tartaric acid (FH-LTA) and Fluoxetine hydrochloride-DL-tartaric acid (FH-DLTA) were obtained from screening experiments. Physical characterization showed that they have unique crystal morphology, thermal, spectroscopic and X-ray diffraction properties. Solubility and dissolution studies showed that Fluoxetine hydrochloride-maleic acid co-crystal possess high aqueous solubility in distilled water, pH 4.6, 7.0 buffer solutions and dissolution rate in distilled water than that of pure drug. Co-crystal formation approach can be used for ionic API to tailor its physical properties.