Skip to Content
Merck
  • Adhesion and spreading of human skin fibroblasts on physicochemically characterized gradient surfaces.

Adhesion and spreading of human skin fibroblasts on physicochemically characterized gradient surfaces.

Journal of biomedical materials research (1995-11-01)
T G Ruardy, J M Schakenraad, H C van der Mei, H J Busscher
ABSTRACT

In this study, adhesion and spreading of human skin fibroblasts on gradient surfaces of dichlorodimethylsilane (DDS) coupled to glass was investigated. Gradient surfaces were prepared by the diffusion technique and characterized by the Wilhelmy plate technique and characterized by the Wilhelmy plate technique for their wettability and by scanning x-ray photoelectron spectroscopy for their chemical surface composition. A linear relation between the gradient length, based on advancing water contact angles, and the square root of the diffusion time of DDS was observed. XPS analysis and the cellular experiments were carried out on gradient surfaces prepared using a diffusion time of 3 h. A continuously varying chemical composition with Si/O elemental surface concentration ratio being highest on the hydrophobic end of the gradient surfaces. In the presence of serum proteins, human skin fibroblasts seeded on these gradient surfaces showed a preferential adhesion onto the steepest part of the gradient, probably due to an optimal local wettability and/or local chemistry. Furthermore, it was shown that the spread area of human fibroblasts increased over the length of the gradient surface when going from the hydrophobic to the hydrophilic end. Summarizing, this study shows that the use of gradient surfaces to study cellular responses to materials surface properties, like wettability, yields more-convincing conclusions than the use of a variety of materials with different wettabilities due to the control of the specific surface chemistry of gradient surfaces.

MATERIALS
Product Number
Brand
Product Description

Supelco
Silanization solution I, ~5% (dimethyldichlorosilane in heptane), Selectophore
Sigma-Aldrich
Dichlorodimethylsilane, ≥99.5%
Sigma-Aldrich
Dichlorodimethylsilane, ≥98.5% (GC)
Sigma-Aldrich
Dichlorodimethylsilane, produced by Wacker Chemie AG, Burghausen, Germany, ≥99.0% (GC)