コンテンツへスキップ
Merck
ホーム組織工学2次元および3次元細胞培養用生分解性ポリエチレングリコール

2次元および3次元細胞培養用生分解性ポリエチレングリコール

Andrea M. Kasko

Department of Bioengineering, University of California, Los Angeles

はじめに

組織工学や薬物送達などをはじめとするバイオテクノロジー分野の進歩に伴い、さまざまな機能性生体材料の需要が増大しています。過去数十年にわたり、高分子生体材料の研究では、他の用途のために開発されたポリマーの生体適合性の確認やその加工技術の開発(エレクトロスピニング、溶媒キャスト/孔物質溶出(porogen leaching)法、3次元印刷など)に重点が置かれてきました。最近では生体医学用に特化した材料の合成、すなわち合成タンパク質や糖類似体、水媒体との相溶性の高いポリマーの合成に加え、自然界に存在するポリマーの化学修飾(ゲル化やin vivoでの安定性の強化など)へと研究の流れが変化しています。この十年の間では、細胞足場としての利用や治療薬の送達を目的として設計された生体材料の開発などが行われています。

研究者から強い関心が寄せられている生体材料の1つに、ヒドロゲルがあります1。ヒドロゲルは2次元および3次元の細胞足場として広く研究されていますが、それは化学的にも物理的にも本来の細胞の環境に非常に近い状態を模倣しているためです2。ヒドロゲルは、合成ポリマー(ポリエチレングリコール、ポリヒドロキシエチルメタクリラートなど)や天然に存在するポリマー(コラーゲン、ヒアルロン酸、ヘパリンなど)から合成され1b、その高い水分含有量と、細胞、タンパク質、DNAの存在下で作製可能であるために細胞培養の3次元モデルとして有用な材料です。構成する材料の反応性にもよりますが、pH3、温度4、クーロン相互作用、共有結合/非共有結合性相互作用5、または重合反応を用いることで、ゲル化を行うことが可能です。

PEG

ポリエチレングリコール(PEG)は親水性ポリマーのひとつで、架橋してネットワークを構成させることで大量の水を保持することができます。一般的にPEGは免疫反応を引き起こさないため、生物学的応用に適した材料です6。1970年代以降、治療用タンパク質やペプチドを修飾することによる溶解度の向上や毒性の低下、循環滞留性の向上のためにPEGは使われてきました7。そして、1970年代後半になると、PEGヒドロゲルを用いた細胞培養の実験が始まりました。PEGヒドロゲルは化学組成が明確であり、その合成や化学修飾に多様な化学を利用することができます。

PEGマクロモノマー

PEGはエチレンオキシドのリビングアニオン開環重合によって合成されます。そのため、多様な末端基(例えば、アルコール、メチルエーテル、アミン、N-ヒドロキシスクシンイミジル(NHS)エステル)を持ち、広い範囲にわたってさまざまな分子量を持つ、よく定義された(多分散性が低い)PEGを容易に得ることができます。

ヒドロゲルの形成にはPEGの架橋が必要です。初期の頃は、電離放射線を用いて非特異的に架橋されていました8。現在では、PEGヒドロゲルの合成には、PEGマクロモノマーの反応性鎖末端を利用して共有結合的に架橋させる方法が一般的に用いられています。

アクリラート、メタクリラート、アリルエーテル、マレイミド、ビニルスルホン、NHSエステル、ビニルエーテル基などの反応性鎖末端を持つPEGマクロモノマー(表1)は、入手の容易な出発物質から簡便に合成されます。PEGのアルコール鎖末端は、塩基存在下で、塩化アクリロイル、塩化メタクリロイルなどの酸性塩化物を用いてエステル化することができます。PEG鎖末端は、塩基性条件下で、2-chloroethyl vinyl etherやallyl bromideなどのハロゲン化アルキルと反応させることでエステル化が可能です。PEGジビニルスルホンは、PEGを大過剰のジビニルスルホンとカップリングさせるか、あるいは、クロロエチルスルホン鎖末端を調製した後に、塩基を除くことでジビニルスルホン基を導入する多段階プロセスによって合成します9

Poly(ethylene glycol) is a hydrophilic polymer that, when cross-linked into networks, can have a high water content.PEG is a suitable material for biological applications because it does not generally elicit an immune response.6 Since the 1970s, PEG has been used to modify therapeutic proteins and peptides to increase their solubility, lower their toxicity and to prolong their circulation half-life.7 In the late 1970s, researchers began to experiment with PEG hydrogels for cell culture.PEG hydrogels are chemically well-defined, and multiple chemistries can be used both for their formation and chemical modification.

PEG Macromers

PEG is easily synthesized by the living anionic ring-opening polymerization of ethylene oxide; well-defined (low polydispersity) PEGs with a range of molecular weights and a variety of end groups (e.g., alcohol, methyl ether, amine, N-hydroxysuccinimidyl (NHS) ester) are widely available.

In order to form a hydrogel, PEG must be cross-linked.Initially, PEG was cross-linked non-specifically using ionizing radiation.8 PEG hydrogels are now typically synthesized via covalent cross-linking of PEG macromers with reactive chain ends.

PEG macromers with reactive chain ends such as acrylate, methacrylate, allyl ether, maleimide, vinyl sulfone, NHS ester and vinyl ether groups (Chart 1) are easily synthesized from readily available starting materials.The alcohol chain ends of PEG can be esterified using acid chlorides (e.g., acryloyl chloride, methacryloyl chloride) in the presence of base.PEG chain ends can be etherified under basic conditions by reaction with alkyl halides such as 2-chloroethyl vinyl ether or allyl bromide.PEG divinyl sulfone is prepared by coupling PEG to a large excess of divinyl sulfone or by a multistep process to prepare chloroethyl sulfone chain ends that undergo basic elimination to form vinyl sulfone groups9.

PEGマクロモノマーのさまざまな末端基

表1PEGマクロモノマーのさまざまな末端基

マクロモノマーはホモ二官能性、あるいはヘテロ二官能性です。ホモ二官能性のマクロモノマーは主にネットワーク形成に使われ、ヘテロ二官能性マクロモノマーはヒドロゲルネットワーク内への治療薬分子の結合に使われます。

ヒドロゲル形成のメカニズム

ヒドロゲルを形成する架橋メカニズムは、PEGマクロモノマーの鎖末端の特性に依存します。多くの場合、一般的にはラジカル開始剤の存在下で反応性のビニル鎖末端が重合化されたときに架橋が起こります。例えば、レドックス生成ラジカル(過硫酸アンモニウムやTEMEDなど)、あるいは光によって生成するラジカル(例えばIrgacure® 651, λ = 365 nm)を用いて、マクロモノマーの重合を開始させることができます(スキーム1)。アクリラートやメタクリラートの鎖末端は連鎖重合します。一方、遂次重合によるネットワーク形成では、多官能性架橋剤(f > 2)はPEG鎖末端と化学量論的に反応しますが、多官能性PEG(f > 2)を二官能性架橋剤と架橋させることもできます(スキーム1)。アクリラート、メタクリラート、ビニルスルホン、マレイミド、ビニルエーテル、アリルエーテルはすべて、反応条件を調整してチオールへ変換させることで、遂次重合によるネットワーク形成が可能です。代表的な架橋剤には、チオールまたはアミン系の構造が含まれています。混合モードでの重合は、同一の反応槽中で両方のメカニズムが生じることによるもので、アクリラート基とメタクリラート基は混合モードでネットワーク形成することができます。どちらのヒドロゲル生成メカニズムも生細胞のカプセル化に利用可能であり、ペプチドやタンパク質、その他治療薬の活性を保ちながら導入することができます。

連鎖重合と遂次重合反応

スキーム1.連鎖重合と遂次重合反応

異なるメカニズムの結果生じたメッシュ構造を図1に示します。連鎖重合で形成されたネットワークでは、成長鎖は架橋サイトに形成されますが、一方の遂次成長によるネットワークでは、欠陥を除く架橋サイトは多官能性架橋剤と同じ官能性を持ちます。連鎖重合と遂次重合のどちらの場合でも、ループ状や完全に絡み合った状態の鎖、ダングリング鎖末端などのネットワーク欠陥が存在することがあります。マクロモノマーの化学的特性とヒドロゲル形成のメカニズムは、ヒドロゲルネットワークの架橋密度に影響を与える点で、どちらも重要です。2次元、3次元の培養に重要な材料特性は、ヒドロゲル形成の際の化学によって容易に制御できます。架橋密度を高めることで、メッシュサイズは小さくなり、膨潤比が減少し、貯蔵弾性率は増加します。また、PEGマクロモノマーの分子量を変化させると、ヒドロゲルの性質を大まかに制御することができます(架橋密度に大きな違いが生じます)。さらに、ヒドロゲル生成に用いる反応メカニズムを変えることで、ヒドロゲルの性質を細かく制御することが可能です(系の架橋密度の調整に利用されます)。

生成メカニズムが与える、ヒドロゲルのネットワーク構造やネットワーク欠陥への影響

図1生成メカニズムが与える、ヒドロゲルのネットワーク構造やネットワーク欠陥への影響

分解性ヒドロゲル

細胞分化や組織の形態形成の研究に3次元ヒドロゲル足場を利用するには、ゲルの物理的および化学的性質を空間的、時間的に制御された方法でコントロールすることが極めて重要となります10。一般的には、高分子材料の性質は、重合/架橋(結合の形成現象)、あるいは制御された分解や放出(結合の切断現象)によって変化します。結合生成には、低分子量の化合物(開始剤、触媒、モノマー、材料に結合させる配位子)が使われることがありますが、結合の切断には外部から化合物を追加する必要はまずありません。低分子化合物は高分子化合物よりもin vitroin vivoで大きな副作用を示すことが多いため、多くの研究グループが高分子生体材料のin situの手段として分解反応を用いています。

加水分解

ヒドロゲルの分解で最も一般的に利用される反応は加水分解であり、ポリマー骨格に水分子を添加することで鎖の切断を引き起こします。無水物、エステル類、アミド類は、いずれも加水分解に対し敏感です。通常、無水物の加水分解は早く、アミド類の無触媒加水分解は非常に遅い反応であるため、加水分解によって分解するヒドロゲルの多くはエステル結合を利用しています。生理学的に妥当な分解時間で加水分解するヒドロゲルを得るためには、一般的に、ラクチドやグリコリドを用いた分解性エステル結合によってPEGを官能基化します。

PEGのアルコール鎖末端は3,6-dimethyl-1,4-dioxane-2,5-dioneと1,4-Dioxane-2,5-dioneの開環反応を引き起こし、それぞれPEGラクチドおよびPEGグリコリドを生成します(スキーム211。開環反応には一般的にtin(II)-2-ethylhexanoateを触媒に用いますが12、4-(dimethylamino)pyridine(DMAP)を触媒として用いても容易に反応が進みます13。この場合、おそらく残存スズよりも容易に触媒を除去できます。PEGラクチドあるいはPEGグリコリドのアルコール鎖末端は、アクリラートやメタクリラートなどの反応性二重結合によって容易に官能基化されます。ヒドロゲルの分解に加えて、エステル結合の加水分解はヒドロゲルにカプセル化された薬物の細胞への送達に利用されています。例えば、デキサメタゾン14やスタチン15などの治療薬は分解性ラクチド結合によってヒドロゲル中に結合され、持続的に放出されます。そのため、間葉幹細胞(MSCs)を骨芽細胞へ分化させるために使用されています。

PEGラクチドとPEGグリコリドの合成

スキーム2PEGラクチドとPEGグリコリドの合成

酵素分解

エステル結合は酵素によって分解が可能ですが、多くの場合、エステルやアミドの非配列特異的な酵素分解よりも、ヒドロゲル中に導入したペプチドの配列特異的な酵素分解が利用されています。Hubbell のグループはこの手法の草分け的存在で16、アクリラート、マレイミド、ビニルスルホンを介してシステイン官能基化ペプチドをマイケル付加させることによって、マトリックスメタロプロテイナーゼ(MMP)感受性結合をヒドロゲルに導入しました(スキーム317

MMP分解性結合はまた、治療薬剤をヒドロゲル中に結合するためにも用いられています。例えば、血管内皮増殖因子(VEG-F)のような増殖因子はMMP感受性結合の酵素分解によって放出され、血管形成を誘発します18

加水分解、酵素分解のいずれにおいても、マクロモノマーの化学的性質により分解速度をあらかじめ決めることができます。加水分解の場合、その材料の分解速度は材料特性(例えば疎水性や親水性)や加水分解性官能基の数によって決定され、材料を一度合成してしまえば変更することはできません。酵素分解の場合、反応は一般的に酵素を産生する細胞の近傍で起こります。加水分解や酵素分解はどちらも持続的なヒドロゲルの分解や治療薬の放出に有効な手法ですが、ヒドロゲルを合成した後では放出速度の調整や停止を行うことができず、また、空間的に放出を制御することもできません。

酵素分解性ヒドロゲル

スキーム3ビニルスルホン基へのシステイン含有ペプチドのマイケル付加によって合成される酵素分解性ヒドロゲル

光分解性ヒドロゲル

加水分解や酵素分解が可能な結合に比べ、光分解性結合の場合には、分解と放出を空間的、時間的に正確に制御できます。多くの研究者が光重合性ヒドロゲルや光機能性ヒドロゲルについて報告していますが、生体適合性光分解性ヒドロゲルの報告はごくわずかです。KloxinとKaskoは2-methoxy-5-nitro-4-(1-hydroxyethyl)phenoxybutanoateを含むPEGマクロモノマー(スキーム4)から合成した光分解性ヒドロゲルネットワークについて報告しており19、オルト-ニトロベンジル(o-NB)結合基の光分解性挙動についての詳細を明らかにしています。光分解性マクロモノマーから合成したヒドロゲルは、露光すると、照射時間、波長、光の強さに応じてバルク分解を起こします。遮光すると分解は停止し、照射を再開すると試料は光分解を続けます。光放出性の細胞接着性配位子RGDS(Arg-Gly-Asp-Ser)を含むヒドロゲルにカプセル化されたhMSCs(ヒト間葉幹細胞)は、10日目にRGDSが放出されると(軟骨形成におけるフィブロネクチンの抑制に対応)、軟骨形成の過程を経て分化します。一方で、この分解性ヒドロゲルの表面エロージョン(侵食)やゲルを用いたリソグラフィは、10-7から10-2 m以上の大きさの形状の作製に用いることができます20。局所的な部分分解による架橋密度の低下と膨潤の増加によって、ヒドロゲルの上に、ゲルから盛り上がった状態のより軟らかい形状をエッチングすることが可能です。

光分解性o-NB結合基部分

スキーム4治療薬の放出を目的として、ヒドロゲル骨格中に導入された光分解性o-NB結合基部分

o-NBを含むヒドロゲルは、一光子光分解に加えて二光子光分解に対しても感受性があり、3次元エッチングに利用できます19,20。一光子反応では、光が照射されたあらゆる領域で反応が起きます。これに対して、多光子リソグラフィでは、複数の光子が同時に吸収された場所のみ、つまり光源の焦点領域で起きます(図2)。生体材料の一光子リソグラフィで使われる一般的な波長は長波長の紫外線(≧365 nm)から可視領域ですが、二光子リソグラフィでは赤外線(一般的におよそ740~800 nm)が使用されます。赤外線は生体適合性がより高いうえに、生細胞に対する破壊力が小さく、大きな侵入深度が得られます。二光子吸収が起こり得るのも、光路全体に沿った部分というよりは収束光の焦点付近に限られており、三次元的な励起の制御が可能となります。一光子、多光子のどちらの反応も、500 nmよりも微細な形状をパターニングできる可能性を持っており、これは哺乳類の細胞よりも小さな大きさです21。このことは、ヒドロゲルの足場構造や化学的性質をこれまでにない精度で空間的制御することが可能であることを意味しています。

一光子/二光子光分解

図2一光子光分解()は紫外可視の光で露光されたヒドロゲル全域で起こり、二光子光分解()は赤外光の2つの光子が同時に吸収された部分でのみ起こります。

o-NBリンカーはまた、治療薬をヒドロゲル中に結合して生細胞へと送達するのにも使われます。Griffinらは、o-NB-PEGマクロモノマーを用いてヒドロゲル中に結合したフルオレセインを制御放出できることを示しました22。このモデル治療薬の放出は、さまざまな波長(365~436 nm)や強度(5~20 mW/cm2)、照射時間(0~20分)の光に対する関数として定量的に示されます。最も速い放出が起こるのは波長が365 nm(これはこの波長でo-NBリンカーのモル吸光係数が高くなることと一致しています)のときですが、波長405 nmのときにも顕著な放出が見られます。この放出は化合物の物理定数(モル吸収光係数など)によって容易にモデル化できます。これらの系では、光の減衰によって化学的、機械的な勾配を容易に作製することができます。

結論

ポリエチレングリコールは入手が容易で、簡便に修飾が可能なポリマーであり、組織培養用2次元、3次元の足場をはじめとするヒドロゲルの作製に広く使われています。また、PEGヒドロゲルへの分解性結合の導入は容易です。加水分解性ゲルでは持続的分解や治療薬の放出が可能であり、酵素分解性ゲルではその分解や放出は細胞に大きく影響されます。光分解を用いることで、ヒドロゲルの化学的、物理的性質を、ユーザーの要望に合わせてリアルタイムで外部から操作することが可能となります。

関連製品

Product #

Image

Description

Add to Cart

689882O-(2-Aminoethyl)-O′-[2-(biotinylamino)ethyl]octaethylene glycol ≥95% (oligomer purity)
671487O-(2-Aminoethyl)-O′-(2-carboxyethyl)polyethylene glycol hydrochloride Mp 3,000
671592O-(2-Aminoethyl)-O′-(2-carboxyethyl)polyethylene glycol 5,000 hydrochloride Mp 5,000
672130O-(2-Aminoethyl)polyethylene glycol Mp 5,000
671924O-(2-Aminoethyl)polyethylene glycol Mp 10,000
07969O-(2-Aminoethyl)polyethylene glycol 3,000 Mp 3,000
672165O-(2-Aminoethyl)-O′-(2-(succinylamino)ethyl)polyethylene glycol hydrochloride Mp 10,000
689440O-(2-Azidoethyl)heptaethylene glycol ≥95% (oligomer purity)
669946O-[2-(Biotinyl-amino)ethyl]-O′-(2-carboxyethyl)polyethylene glycol Mp 3,000
689998O-[2-(Biotinylamino)ethyl]-O′-(2-carboxyethyl)undecaethylene glycol ≥95% (oligomer purity)
670049O-[2-(Biotinyl-amino)ethyl]-O′-[3-(N-succinimidyloxy)-3-oxopropyl]polyethylene glycol Mp 3,000
689653O-(2-Carboxyethyl)-O′-[2-(Fmoc-amino)-ethyl]heptacosaethylene glycol ≥90% (oligomer purity)
670812O-(2-Carboxyethyl)polyethylene glycol 3,000
671037O-(2-Carboxyethyl)polyethylene glycol 10,000
712515O-(3-Carboxypropyl)-O′-[2-(3-mercaptopropionylamino)ethyl]-polyethylene glycol Mw 3000
712523O-(3-Carboxypropyl)-O′-[2-(3-mercaptopropionylamino)ethyl]-polyethylene glycol Mw 5000
259268Hexaethylene glycol 97%
670162O-[N-(6-Maleimidohexanoyl)aminoethyl]-O′-(2-carboxyethyl)polyethylene glycol Mp 3,000
670278O-[N-(6-Maleimidohexanoyl)aminoethyl]-O′-[3-(N-succinimidyloxy)-3-oxopropyl]polyethylene glycol 3,000 Mp 3,000
689777O-[N-(3-Maleimidopropionyl)aminoethyl]-O′-[3-(N-succinimidyloxy)-3-oxopropyl]heptacosaethylene glycol ≥90% (oligomer purity)
719080PEG-ditosylate average Mn 1,300
705047PEG-ditosylate average Mn 10,000
701750PEG-di-p-tosylate average Mn 3,500
335754Pentaethylene glycol 98%
81300Poly(ethylene glycol) average Mn 20,000
202444Poly(ethylene glycol) average Mn 3,350, powder
81210Poly(ethylene glycol) average Mw 1,500
295906Poly(ethylene glycol) average Mn 2,050, chips
309028Poly(ethylene glycol) average Mn 10,000, flakes
14509Poly(ethylene glycol) bis(amine) Mw 20,000
14501Poly(ethylene glycol) bis(amine) Mw 2,000
14502Poly(ethylene glycol) bis(amine) Mw 3,000
407038Poly(ethylene glycol) bis(carboxymethyl) ether average Mn 600
406996Poly(ethylene glycol) bis(carboxymethyl) ether average Mn 250
699810Poly(ethylene glycol) diacetylene average Mn 2,000
475629Poly(ethylene glycol) diacrylate average Mn 250
701963Poly(ethylene glycol) diacrylate average Mn 6,000, contains ≤1500 ppm MEHQ as inhibitor
729094Poly(ethylene glycol) diacrylate average Mn 10,000, contains MEHQ as inhibitor
729086Poly(ethylene glycol) diacrylate average Mn 1,000, contains MEHQ as inhibitor
475696Poly(ethylene glycol) diglycidyl ether average Mn 500
409510Poly(ethylene glycol) dimethacrylate average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor
687537Poly(ethylene glycol) dimethacrylate average Mn 6,000, contains 1000 ppm 4-methoxyphenol as inhibitor
725692Poly(ethylene glycol) dimethacrylate average Mn 20,000, contains MEHQ as inhibitor
725684Poly(ethylene glycol) dimethacrylate average Mn 10,000, contains MEHQ as inhibitor
717142Poly(ethylene glycol) dithiol average Mn 1,000
704539Poly(ethylene glycol) dithiol average Mn 3,400
705004Poly(ethylene glycol) dithiol average Mn 8,000
410195Poly(ethylene glycol) divinyl ether average Mn 250
752398Poly(ethylene glycol), 4 hydroxyl dendron, generation 1 average Mn 20,300
579319Poly(ethylene glycol), α-maleimidopropionamide-ω-formyl terminated average Mn 3,000
409537Poly(ethylene glycol) methacrylate average Mn 360, contains 500-800 ppm MEHQ as inhibitor
409529Poly(ethylene glycol) methacrylate average Mn 500, contains 900 ppm monomethyl ether hydroquinone as inhibitor
81323Poly(ethylene glycol) methyl ether average Mn 5,000
202487Poly(ethylene glycol) methyl ether average Mn 550
202495Poly(ethylene glycol) methyl ether average Mn 750
732621Poly(ethylene glycol) methyl ether average Mn 10,000
732613Poly(ethylene glycol) methyl ether average Mn 20,000
699802Poly(ethylene glycol)methyl ether acetylene average Mn 2,000
730289Poly(ethylene glycol) methyl ether acrylate average Mn 5,000, contains MEHQ as inhibitor
730270Poly(ethylene glycol) methyl ether acrylate average Mn 2,000, contains MEHQ as inhibitor
740705Poly(ethylene glycol) methyl ether 2-(dodecylthiocarbonothioylthio)-2-methylpropionate average Mn 1,100
731765Poly(ethylene glycol) methyl ether maleimide average Mn 2,000
447951Poly(ethylene glycol) methyl ether methacrylate average Mn 950, contains 300 ppm BHT as inhibitor, 100 ppm MEHQ as inhibitor
730327Poly(ethylene glycol) methyl ether methacrylate average Mn 4,000, contains ≤300 ppm monomethyl ether hydroquinone as inhibitor
730319Poly(ethylene glycol) methyl ether methacrylate average Mn 1500, contains ≤300 ppm monomethyl ether hydroquinone as stabilizer
729108Poly(ethylene glycol) methyl ether thiol average Mn 800
729140Poly(ethylene glycol) methyl ether thiol average Mn 2,000
729159Poly(ethylene glycol) methyl ether thiol average Mn 6,000
729116Poly(ethylene glycol) methyl ether tosylate average Mn 900
729124Poly(ethylene glycol) methyl ether tosylate average Mn 2,000
729132Poly(ethylene glycol) methyl ether tosylate average Mn 5,000
309524Poly(ethylene glycol) tetrahydrofurfuryl ether average Mn 200
181986Poly(ethylene oxide) average Mv 100,000, powder
182028Poly(ethylene oxide) average Mv 600,000, powder
181994Poly(ethylene oxide) average Mv 200,000, powder
110175Tetraethylene glycol 99%
712507O-[2-(3-Tritylthiopropionylamino)ethyl]polyethylene glycol Mp 3,000

参考文献

  1. (a) Drury, J. L.; Mooney, D. J. Biomaterials 2003, 24, 4337-4351.
    (b) Lee, K. Y.; Mooney, D. J. Chem. Rev. 2001, 101, 1869-1879.
    (c) Hoffman, A. S. Bioartificial Organs III: Tissue Sourcing, Immunoisolation, and Clinical Trials;Hunkeler, D., Ed.; New York Academy of Sciences: New York, 2001; pp 62-73.
    (d) Hoffman, A. S. Adv.Drug Delivery Rev. 2002, 54, 3-12.
  2. (a) Tibbitt, M. W.; Anseth, K. S. Biotechnol.Bioeng.2009, 103, 655-663.
    (b) Lin, C. C.; Anseth, K. S. Pharm. Res. 2009, 26, 631-643.
  3. (a) Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K. F.; Adler, H. J. P. Sensors 2008, 8, 561-581.
    (b) Gupta, P.; Vermani, K.; Garg, S. Drug Discovery Today 2002, 7, 569-579.
  4. Ruel-Gariepy, E.; Leroux, J. C. Eur. J. Pharm. Biopharm.2004, 58, 409-426.
  5. Yang, Z.; Xu, B. J. Mater.Chem. 2007, 17, 2385-2393.
  6. Zalipsky, S.; Harris, J. M. Poly(Ethylene Glycol) 1997, 680, 1-13.
  7. Davis, F. F. Adv.Drug Deliver Rev. 2002, 54, 457-458.
  8. Merrill, E. W.; Salzman, E. W.; Wan, S.; Mahmud, N.; Kushner, L.; Lindon, J. N.; Curme, J. T. Am. Soc.Art. Int. Org.1982, 28, 482-487.
  9. Morpurgo, M.; Veronese, F. M.; Kachensky, D.; Harris, J. M. Bioconjugate Chem. 1996, 7, 363-368.
  10. Lutolf, M. P.; Hubbell, J. A. Nat. Biotechnol.2005, 23, 47-55.
  11. Sawhney, A. S.; Pathak, C. P.; Hubbell, J. A. Macromolecules 1993, 26, 581-587.
  12. Du, Y. J.; Lemstra, P. J.; Nijenhuis, A. J.; Vanaert, H. A. M.; Bastiaansen, C. Macromolecules 1995, 28, 2124-2132.
  13. Nederberg, F.; Connor, E. F.; Moller, M.; Glauser, T.; Hedrick, J. L. Angew.Chem. Int. Edit.2001, 40, 2712-2715.
  14. Kim, H.; Kim, H. W.; Suh, H. Biomaterials 2003, 24, 4671-4679.
  15. Benoit, D. S. W.; Nuttelman, C. R.; Collins, S. D.; Anseth, K. S. Biomaterials 2006, 27, 6102-6110.
  16. West, J. L.; Hubbell, J. A. Macromolecules 1999, 32, 241-244.
  17. (a) Lutolf, M. P.; Hubbell, J. A. Biomacromolecules 2003, 4, 713-722.
    (b) Lutolf, M. P.; Lauer-Fields, J. L.; Schmoekel, H. G.; Metters, A. T.; Weber, F. E.; Fields, G. B.; Hubbell, J. A. P. Natl.Acad.Sci. USA 2003, 100, 5413-5418.
  18. Zisch, A. H.; Lutolf, M. P.; Ehrbar, M.; Raeber, G. P.; Rizzi, S. C.; Davies, N.; Schmokel, H.; Bezuidenhout, D.; Djonov, V.; Zilla, P.; Hubbell, J. A. Faseb.J. 2003, 17, 2260.
  19. (a) Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Science 2009, 324, 59-63.
    (b) Kloxin, A. M.; Tibbitt, M. W.; Kasko, A. M.; Fairbairn, J. A.; Anseth, K. S. Adv.Mater.2010, 22, 61-66.
  20. Wong, D. Y.; Griffin, D. R.; Reed, J.; Kasko, A. M. Macromolecules 2010, 43, 2824-2831.
  21. Kasko, A. M.; Wong, D. Y. Future Med. Chem. 2010, 2, 1669-1680.
  22. Griffin, D. R.; Patterson, J. T.; Kasko, A. M. Biotechnol.Bioeng.2010, 107, 1012-1019.

Poly(ethylene glycol) is a hydrophilic polymer that, when cross-linked into networks, can have a high water content.PEG is a suitable material for biological applications because it does not generally elicit an immune response.6 Since the 1970s, PEG has been used to modify therapeutic proteins and peptides to increase their solubility, lower their toxicity and to prolong their circulation half-life.7 In the late 1970s, researchers began to experiment with PEG hydrogels for cell culture.PEG hydrogels are chemically well-defined, and multiple chemistries can be used both for their formation and chemical modification.

PEG Macromers

PEG is easily synthesized by the living anionic ring-opening polymerization of ethylene oxide; well-defined (low polydispersity) PEGs with a range of molecular weights and a variety of end groups (e.g., alcohol, methyl ether, amine, N-hydroxysuccinimidyl (NHS) ester) are widely available.

In order to form a hydrogel, PEG must be cross-linked.Initially, PEG was cross-linked non-specifically using ionizing radiation.8 PEG hydrogels are now typically synthesized via covalent cross-linking of PEG macromers with reactive chain ends.

PEG macromers with reactive chain ends such as acrylate, methacrylate, allyl ether, maleimide, vinyl sulfone, NHS ester and vinyl ether groups (Chart 1) are easily synthesized from readily available starting materials.The alcohol chain ends of PEG can be esterified using acid chlorides (e.g., acryloyl chloride, methacryloyl chloride) in the presence of base.PEG chain ends can be etherified under basic conditions by reaction with alkyl halides such as 2-chloroethyl vinyl ether or allyl bromide.PEG divinyl sulfone is prepared by coupling PEG to a large excess of divinyl sulfone or by a multistep process to prepare chloroethyl sulfone chain ends that undergo basic elimination to form vinyl sulfone groups9.

End groups of different PEG macromers

Chart 1.End groups of different PEG macromers.

Macromers can be homobifunctional or heterobifunctional.Homobifunctional macromers are typically used to form networks, while heterobifunctional macromers may be used to tether a therapeutic molecule into a hydrogel network.

Mechanisms of Hydrogel Formation

The cross-linking mechanism to form hydrogels depends on the identity of the chain ends of PEG macromers.In most cases, cross-linking occurs when the reactive vinyl chain ends are polymerized, usually with a free radical initiator.For example, polymerization of macromers can be initiated using redox-generated radicals (e.g., ammonium persulfate and TEMED), or radicals generated with light (e.g., Irgacure® 651, λ=365 nm Scheme 1).Acrylate and methacrylate chain ends undergo chain polymerization.In step growth network formation, a multifunctional (f>2) cross-linker reacts with the PEG chain ends in a stoichiometric manner; alternatively, multifunctional PEGs (f>2) can be crosslinked with difunctional crosslinkers (Scheme 1).Acrylate, methacrylate, vinyl sulfone, maleimide, vinyl ether and allyl ether are all capable of step growth network formation, through conversion to thiols depending on reaction conditions.Typical cross-linkers may include thiol or amine moieties.Mixed-mode polymerizations are the result of both mechanisms occurring in the same reaction vessel; acrylate and methacrylate groups can undergo mixed mode network formation.Both mechanisms of hydrogel formation can be used to encapsulate live cells, and both mechanisms allow for the reactive incorporation of peptides, proteins and other therapeutics.

Chain growth and step growth reactions

Scheme 1.Chain growth and step growth reactions.

The mesh structure that results from different mechanisms is depicted in Figure 1.In chain growth networks, a kinetic chain is formed at the crosslink site, while in step growth networks, the crosslink sites bear the same functionality as the multifunctional cross-linker, neglecting defects.In both chain and step growth, network defects such as loops, permanent entanglements and dangling chain ends may exist.The chemical identity of the macromer and the mechanism of hydrogel formation are both important as each influences the cross-link density of the hydrogel network.Material properties that are important to 2D and 3D culture are easily controlled through the chemistry of hydrogel formation.As cross-linking density increases, mesh size decreases, swelling ratio decreases, and storage modulus increases.Varying the molecular weight of the PEG macromer results in coarse control over hydrogel properties (large differences in cross-linking density).Varying the reaction mechanism used to produce the hydrogels results in fine control over hydrogel properties (can be used to tune cross-linking density of a system).

Formation mechanism affects hydrogel network structure

Figure 1.Formation mechanism affects hydrogel network structure and network defects.

Degradeable Hydrogels

In order to use 3D hydrogel scaffolds to study cell differentiation and tissue evolution, it is critical to be able to control the physical and chemical properties of the gel in a spatially and temporally controlled manner.10 Polymeric material properties are typically changed through polymerization/cross-linking (bond forming events) or through controlled degradation and/or release (bond breaking events).Bond forming events typically often use small molecule reagents (initiators, catalysts, monomers, ligands to be conjugated to the material) while bond breaking typically does not rely on exogenous reagents.Small molecules often have more adverse effects in vitro and in vivo than polymeric reagents so many research groups use degradation as a tool for in situ manipulation of polymeric biomaterials.

Hydrolytic Degradation

The mechanism of degradation most commonly utilized in hydrogels is hydrolysis, in which a molecule of water adds to the polymer backbone, causing chain scission.Anhydrides, esters and amides are all susceptible to hydrolysis.Anyhydrides typically hydrolyze too quickly, and the uncatalyzed hydrolysis of amides is too slow, so most hydrogels that degrade hydrolytically utilize ester linkages.In order to obtain hydrolytically degradable hydrogels with physiologically relevant time scales of degradation, researchers typically functionalize PEG with degradable ester linkages using lactide or glycolide segments.

Alcohol chain ends on PEG can initiate ring-opening reactions of 3,6-dimethyl-1,4-dioxane-2,5-dione and 1,4-Dioxane-2,5-dione to generate PEG-lactide and PEG-glycolide, respectively (Scheme 2).11 The ring-opening reaction is typically catalyzed by tin(II)-2-ethylhexanoate,12 although the reaction is also easily accomplished using dimethylaminopyridine as a catalyst,13 which may be easier to remove than the residual tin.The alcohol chain ends of PEG-lactide or PEG-glycolide are easily functionalized with reactive double bonds such as acrylate and methacrylate.

Synthesis of PEG-lactide and PEG-glycolide

Scheme 2.Synthesis of PEG-lactide and PEG-glycolide.

Enzymatic Degradation

Although ester linkages are enzymatically degradable, most researchers utilize sequence-specific enzymatic degradation of peptides incorporated into hydrogels rather than non-specific enzymatic degradation of esters and amides.Hubbell′s group pioneered this approach16 by incorporating matrix metalloproteinase (MMP) sensitive linkages into hydrogels via Michael addition of cysteine-functionalized peptides across acrylates, maleimides and vinyl sulfones (Scheme 3).17

MMP-degradable linkages have also been used to tether therapeutic agents into hydrogels.For example, growth factors such as vascular endothelial growth factor (VEG-F) can be released via enzymatic degradation of an MMP-sensitive tether to induce angiogenesis.18

In both hydrolysis and enzymolysis, the rate of degradation is predetermined by the chemistry of the macromer.In hydrolysis, the degradation rate of the material is pre-engineered through the identity (e.g., hydrophobicity or hydrophilicity) and number of the hydrolysable groups, and cannot be changed once the material is fabricated.In enzymolysis, the degradation typically occurs in an area local to the cells producing the enzyme.While hydrolysis and enzymolysis are both effective methods for sustained hydrogel degradation and sustained release of therapeutic agents, the rate of release cannot be adjusted or arrested after the hydrogel is fabricated, and release is not spatially controlled.

Enzymatically degradable hydrogels

Scheme 3.Enzymatically degradable hydrogels via Michael addition of cysteinecontaining peptides to vinyl sulfone groups.

Photodegradable Hydrogels

In contrast to hydrolytically and enzymatically degradable linkages, photodegradable linkages allow precise spatial and temporal control over degradation and release.While many researchers have reported photopolymerizable hydrogels, and photofunctionalizable hydrogels, very few reports exist of biocompatible photodegradable hydrogels.Kloxin and Kasko reported photodegradable hydrogel networks formed from 2-methoxy-5-nitro-4-(1-hydroxyethyl) phenoxybutanoate-containing PEG macromers (Scheme 4)19; the photodegradation behavior of the ortho-nitrobenzyl (o-NB) linker group is well-characterized.Hydrogels formed from the photodegradable macromer show bulk degradation upon exposure to light that is dependent on exposure time, wavelength, and light intensity.When the light is shuttered, degradation is arrested; the sample continues photolyzing once light exposure resumes. hMSCs (human mesenchymal stem cells) encapsulated in a hydrogel containing the photo-releasable cell-adhesive ligand RGDS (Arg-Gly-Asp-Ser) differentiate down the chondrogenic pathway when the RGD is released at day ten (corresponding to the downregulation of fibronectin during chondrogenesis).Surface erosion and through-gel lithography of this degradable hydrogel can be used to form features over a range of lengths scales, from 10-7 m to 10-2 m or larger.20 Partial degradation in a local area results in decreased cross-link density and increased swelling, providing a means to etch softer features onto a hydrogel that protrude out from the gel.

Photodegradable o-NB moieties

Scheme 4.Photodegradable o-NB moieties incorporated into hydrogel backbone and for therapeutic agent release.

In addition to single photon photolysis, the o-NB containing hydrogels are also susceptible to two-photon photolysis, allowing for 3D etching.19-20 In single photon reactions, any area exposed to the light will react.In contrast, multi-photon lithography should occur only where multiple photons are simultaneously absorbed, which occurs at the focal volume of the light source (inset).Typical wavelengths in single photon lithography of biomaterials range from long wave UV (≥365 nm) into the visible region, while two-photon lithography uses IR light (typically ~740–800 nm).IR light is more biocompatible and less destructive to live tissues and offers greater penetration depth.The probability of twophoton absorption occurring is also tightly limited to the focal point of the focused light, rather than along the entire path of the light, providing 3D control over excitation.Both single- and multi-photon reactions have the potential to pattern materials with features smaller than 500 nm, much smaller than the size of a mammalian cell.21 This represents an unprecedented level of spatial control over hydrogel scaffold structure and chemistry.

Single and two photon photolysis

Figure 2.Single photon photolysis (left) occurs in the entire area of the hydrogel exposed to UV-visible light, and two photon photolysis (right) results only in the area where simultaneous absorption of two photons of IR light occurs.

The o-NB linker can also be used to tether therapeutic agents into hydrogels for delivery to live cells.Griffin et al. demonstrated the controlled release of fluorescein tethered into a hydrogel through an o-NB-PEG macromer.22 The release of this model therapeutic as a function of light exposure at multiple wavelengths (365–436 nm), intensities (5–20 mW/cm2) and durations (0–20 minutes) was quantified.While the fastest release occurs at 365 nm (which corresponds to a higher molar absorptivity of the o-NB linker at that wavelength), significant release is also seen at 405 nm; the release is easily modeled from physical constants of the molecules (such as molar absorptivity).Light attenuation allows the facile formation of chemical and mechanical gradients in these systems.

Conclusion

Poly(ethylene glycol) is a readily available, easily modifiable polymer.It has found widespread use in hydrogel fabrication, including as 2D and 3D scaffolds for tissue culture.Degradable linkages are easily introduced into PEG hydrogels.Hydrolytically degradable gels allow for sustained material degradation and/or therapeutic agent release.Degradation and release is cell-dictated in enzymatically degradable gels.Photodegradation allows for real-time user tailored external manipulation of the chemical and physical properties of hydrogels.

Materials

Product #

Image

Description

Add to Cart

689882O-(2-Aminoethyl)-O′-[2-(biotinylamino)ethyl]octaethylene glycol ≥95% (oligomer purity)
671487O-(2-Aminoethyl)-O′-(2-carboxyethyl)polyethylene glycol hydrochloride Mp 3,000
671592O-(2-Aminoethyl)-O′-(2-carboxyethyl)polyethylene glycol 5,000 hydrochloride Mp 5,000
672130O-(2-Aminoethyl)polyethylene glycol Mp 5,000
671924O-(2-Aminoethyl)polyethylene glycol Mp 10,000
07969O-(2-Aminoethyl)polyethylene glycol 3,000 Mp 3,000
672165O-(2-Aminoethyl)-O′-(2-(succinylamino)ethyl)polyethylene glycol hydrochloride Mp 10,000
689440O-(2-Azidoethyl)heptaethylene glycol ≥95% (oligomer purity)
669946O-[2-(Biotinyl-amino)ethyl]-O′-(2-carboxyethyl)polyethylene glycol Mp 3,000
689998O-[2-(Biotinylamino)ethyl]-O′-(2-carboxyethyl)undecaethylene glycol ≥95% (oligomer purity)
670049O-[2-(Biotinyl-amino)ethyl]-O′-[3-(N-succinimidyloxy)-3-oxopropyl]polyethylene glycol Mp 3,000
689653O-(2-Carboxyethyl)-O′-[2-(Fmoc-amino)-ethyl]heptacosaethylene glycol ≥90% (oligomer purity)
670812O-(2-Carboxyethyl)polyethylene glycol 3,000
671037O-(2-Carboxyethyl)polyethylene glycol 10,000
712515O-(3-Carboxypropyl)-O′-[2-(3-mercaptopropionylamino)ethyl]-polyethylene glycol Mw 3000
712523O-(3-Carboxypropyl)-O′-[2-(3-mercaptopropionylamino)ethyl]-polyethylene glycol Mw 5000
259268Hexaethylene glycol 97%
670162O-[N-(6-Maleimidohexanoyl)aminoethyl]-O′-(2-carboxyethyl)polyethylene glycol Mp 3,000
670278O-[N-(6-Maleimidohexanoyl)aminoethyl]-O′-[3-(N-succinimidyloxy)-3-oxopropyl]polyethylene glycol 3,000 Mp 3,000
689777O-[N-(3-Maleimidopropionyl)aminoethyl]-O′-[3-(N-succinimidyloxy)-3-oxopropyl]heptacosaethylene glycol ≥90% (oligomer purity)
719080PEG-ditosylate average Mn 1,300
705047PEG-ditosylate average Mn 10,000
701750PEG-di-p-tosylate average Mn 3,500
335754Pentaethylene glycol 98%
81300Poly(ethylene glycol) average Mn 20,000
202444Poly(ethylene glycol) average Mn 3,350, powder
81210Poly(ethylene glycol) average Mw 1,500
295906Poly(ethylene glycol) average Mn 2,050, chips
309028Poly(ethylene glycol) average Mn 10,000, flakes
14509Poly(ethylene glycol) bis(amine) Mw 20,000
14501Poly(ethylene glycol) bis(amine) Mw 2,000
14502Poly(ethylene glycol) bis(amine) Mw 3,000
407038Poly(ethylene glycol) bis(carboxymethyl) ether average Mn 600
406996Poly(ethylene glycol) bis(carboxymethyl) ether average Mn 250
699810Poly(ethylene glycol) diacetylene average Mn 2,000
475629Poly(ethylene glycol) diacrylate average Mn 250
701963Poly(ethylene glycol) diacrylate average Mn 6,000, contains ≤1500 ppm MEHQ as inhibitor
729094Poly(ethylene glycol) diacrylate average Mn 10,000, contains MEHQ as inhibitor
729086Poly(ethylene glycol) diacrylate average Mn 1,000, contains MEHQ as inhibitor
475696Poly(ethylene glycol) diglycidyl ether average Mn 500
409510Poly(ethylene glycol) dimethacrylate average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor
687537Poly(ethylene glycol) dimethacrylate average Mn 6,000, contains 1000 ppm 4-methoxyphenol as inhibitor
725692Poly(ethylene glycol) dimethacrylate average Mn 20,000, contains MEHQ as inhibitor
725684Poly(ethylene glycol) dimethacrylate average Mn 10,000, contains MEHQ as inhibitor
717142Poly(ethylene glycol) dithiol average Mn 1,000
704539Poly(ethylene glycol) dithiol average Mn 3,400
705004Poly(ethylene glycol) dithiol average Mn 8,000
410195Poly(ethylene glycol) divinyl ether average Mn 250
752398Poly(ethylene glycol), 4 hydroxyl dendron, generation 1 average Mn 20,300
579319Poly(ethylene glycol), α-maleimidopropionamide-ω-formyl terminated average Mn 3,000
409537Poly(ethylene glycol) methacrylate average Mn 360, contains 500-800 ppm MEHQ as inhibitor
409529Poly(ethylene glycol) methacrylate average Mn 500, contains 900 ppm monomethyl ether hydroquinone as inhibitor
81323Poly(ethylene glycol) methyl ether average Mn 5,000
202487Poly(ethylene glycol) methyl ether average Mn 550
202495Poly(ethylene glycol) methyl ether average Mn 750
732621Poly(ethylene glycol) methyl ether average Mn 10,000
732613Poly(ethylene glycol) methyl ether average Mn 20,000
699802Poly(ethylene glycol)methyl ether acetylene average Mn 2,000
730289Poly(ethylene glycol) methyl ether acrylate average Mn 5,000, contains MEHQ as inhibitor
730270Poly(ethylene glycol) methyl ether acrylate average Mn 2,000, contains MEHQ as inhibitor
740705Poly(ethylene glycol) methyl ether 2-(dodecylthiocarbonothioylthio)-2-methylpropionate average Mn 1,100
731765Poly(ethylene glycol) methyl ether maleimide average Mn 2,000
447951Poly(ethylene glycol) methyl ether methacrylate average Mn 950, contains 300 ppm BHT as inhibitor, 100 ppm MEHQ as inhibitor
730327Poly(ethylene glycol) methyl ether methacrylate average Mn 4,000, contains ≤300 ppm monomethyl ether hydroquinone as inhibitor
730319Poly(ethylene glycol) methyl ether methacrylate average Mn 1500, contains ≤300 ppm monomethyl ether hydroquinone as stabilizer
729108Poly(ethylene glycol) methyl ether thiol average Mn 800
729140Poly(ethylene glycol) methyl ether thiol average Mn 2,000
729159Poly(ethylene glycol) methyl ether thiol average Mn 6,000
729116Poly(ethylene glycol) methyl ether tosylate average Mn 900
729124Poly(ethylene glycol) methyl ether tosylate average Mn 2,000
729132Poly(ethylene glycol) methyl ether tosylate average Mn 5,000
309524Poly(ethylene glycol) tetrahydrofurfuryl ether average Mn 200
181986Poly(ethylene oxide) average Mv 100,000, powder
182028Poly(ethylene oxide) average Mv 600,000, powder
181994Poly(ethylene oxide) average Mv 200,000, powder
110175Tetraethylene glycol 99%
712507O-[2-(3-Tritylthiopropionylamino)ethyl]polyethylene glycol Mp 3,000

References

  1. (a) Drury, J. L.; Mooney, D. J. Biomaterials 2003, 24, 4337-4351.
    (b) Lee, K. Y.; Mooney, D. J. Chem. Rev. 2001, 101, 1869-1879.
    (c) Hoffman, A. S. Bioartificial Organs III: Tissue Sourcing, Immunoisolation, and Clinical Trials;Hunkeler, D., Ed.; New York Academy of Sciences: New York, 2001; pp 62-73.
    (d) Hoffman, A. S. Adv.Drug Delivery Rev. 2002, 54, 3-12.
  2. (a) Tibbitt, M. W.; Anseth, K. S. Biotechnol.Bioeng.2009, 103, 655-663.
    (b) Lin, C. C.; Anseth, K. S. Pharm. Res. 2009, 26, 631-643.
  3. (a) Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K. F.; Adler, H. J. P. Sensors 2008, 8, 561-581.
    (b) Gupta, P.; Vermani, K.; Garg, S. Drug Discovery Today 2002, 7, 569-579.
  4. Ruel-Gariepy, E.; Leroux, J. C. Eur. J. Pharm. Biopharm.2004, 58, 409-426.
  5. Yang, Z.; Xu, B. J. Mater.Chem. 2007, 17, 2385-2393.
  6. Zalipsky, S.; Harris, J. M. Poly(Ethylene Glycol) 1997, 680, 1-13.
  7. Davis, F. F. Adv.Drug Deliver Rev. 2002, 54, 457-458.
  8. Merrill, E. W.; Salzman, E. W.; Wan, S.; Mahmud, N.; Kushner, L.; Lindon, J. N.; Curme, J. T. Am. Soc.Art. Int. Org.1982, 28, 482-487.
  9. Morpurgo, M.; Veronese, F. M.; Kachensky, D.; Harris, J. M. Bioconjugate Chem. 1996, 7, 363-368.
  10. Lutolf, M. P.; Hubbell, J. A. Nat. Biotechnol.2005, 23, 47-55.
  11. Sawhney, A. S.; Pathak, C. P.; Hubbell, J. A. Macromolecules 1993, 26, 581-587.
  12. Du, Y. J.; Lemstra, P. J.; Nijenhuis, A. J.; Vanaert, H. A. M.; Bastiaansen, C. Macromolecules 1995, 28, 2124-2132.
  13. Nederberg, F.; Connor, E. F.; Moller, M.; Glauser, T.; Hedrick, J. L. Angew.Chem. Int. Edit.2001, 40, 2712-2715.
  14. Kim, H.; Kim, H. W.; Suh, H. Biomaterials 2003, 24, 4671-4679.
  15. Benoit, D. S. W.; Nuttelman, C. R.; Collins, S. D.; Anseth, K. S. Biomaterials 2006, 27, 6102-6110.
  16. West, J. L.; Hubbell, J. A. Macromolecules 1999, 32, 241-244.
  17. (a) Lutolf, M. P.; Hubbell, J. A. Biomacromolecules 2003, 4, 713-722.
    (b) Lutolf, M. P.; Lauer-Fields, J. L.; Schmoekel, H. G.; Metters, A. T.; Weber, F. E.; Fields, G. B.; Hubbell, J. A. P. Natl.Acad.Sci. USA 2003, 100, 5413-5418.
  18. Zisch, A. H.; Lutolf, M. P.; Ehrbar, M.; Raeber, G. P.; Rizzi, S. C.; Davies, N.; Schmokel, H.; Bezuidenhout, D.; Djonov, V.; Zilla, P.; Hubbell, J. A. Faseb.J. 2003, 17, 2260.
  19. (a) Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Science 2009, 324, 59-63.
    (b) Kloxin, A. M.; Tibbitt, M. W.; Kasko, A. M.; Fairbairn, J. A.; Anseth, K. S. Adv.Mater.2010, 22, 61-66.
  20. Wong, D. Y.; Griffin, D. R.; Reed, J.; Kasko, A. M. Macromolecules 2010, 43, 2824-2831.
  21. Kasko, A. M.; Wong, D. Y. Future Med. Chem. 2010, 2, 1669-1680.
  22. Griffin, D. R.; Patterson, J. T.; Kasko, A. M. Biotechnol.Bioeng.2010, 107, 1012-1019.

End groups of different PEG macromers.

Chart 1.End groups of different PEG macromers.

Macromers can be homobifunctional or heterobifunctional.Homobifunctional macromers are typically used to form networks, while heterobifunctional macromers may be used to tether a therapeutic molecule into a hydrogel network.

Mechanisms of Hydrogel Formation

The cross-linking mechanism to form hydrogels depends on the identity of the chain ends of PEG macromers.In most cases, cross-linking occurs when the reactive vinyl chain ends are polymerized, usually with a free radical initiator.For example, polymerization of macromers can be initiated using redox-generated radicals (e.g., ammonium persulfate and TEMED), or radicals generated with light (e.g., Irgacure® 651, λ=365 nM Scheme 1).Acrylate and methacrylate chain ends undergo chain polymerization.In step growth network formation, a multifunctional (f>2) cross-linker reacts with the PEG chain ends in a stoichiometric manner; alternatively, multifunctional PEGs (f>2) can be crosslinked with difunctional crosslinkers (Scheme 1).Acrylate, methacrylate, vinyl sulfone, maleimide, vinyl ether and allyl ether are all capable of step growth network formation, through conversion to thiols depending on reaction conditions.Typical cross-linkers may include thiol or amine moieties.Mixed-mode polymerizations are the result of both mechanisms occurring in the same reaction vessel; acrylate and methacrylate groups can undergo mixed mode network formation.Both mechanisms of hydrogel formation can be used to encapsulate live cells, and both mechanisms allow for the reactive incorporation of peptides, proteins and other therapeutics.

Chain growth and step growth reactions

Scheme 1.Chain growth and step growth reactions.

The mesh structure that results from different mechanisms is depicted in Figure 1.In chain growth networks, a kinetic chain is formed at the crosslink site, while in step growth networks, the crosslink sites bear the same functionality as the multifunctional cross-linker, neglecting defects.In both chain and step growth, network defects such as loops, permanent entanglements and dangling chain ends may exist.The chemical identity of the macromer and the mechanism of hydrogel formation are both important as each influences the cross-link density of the hydrogel network.Material properties that are important to 2D and 3D culture are easily controlled through the chemistry of hydrogel formation.As cross-linking density increases, mesh size decreases, swelling ratio decreases, and storage modulus increases.Varying the molecular weight of the PEG macromer results in coarse control over hydrogel properties (large differences in cross-linking density).Varying the reaction mechanism used to produce the hydrogels results in fine control over hydrogel properties (can be used to tune cross-linking density of a system).

Formation mechanism affects hydrogel network structure and network defects

Figure 1.Formation mechanism affects hydrogel network structure and network defects.

Degradeable Hydrogels

In order to use 3D hydrogel scaffolds to study cell differentiation and tissue evolution, it is critical to be able to control the physical and chemical properties of the gel in a spatially and temporally controlled manner.10 Polymeric material properties are typically changed through polymerization/cross-linking (bond forming events) or through controlled degradation and/or release (bond breaking events).Bond forming events typically often use small molecule reagents (initiators, catalysts, monomers, ligands to be conjugated to the material) while bond breaking typically does not rely on exogenous reagents.Small molecules often have more adverse effects in vitro and in vivo than polymeric reagents so many research groups use degradation as a tool for in situ manipulation of polymeric biomaterials.

Hydrolytic Degradation

The mechanism of degradation most commonly utilized in hydrogels is hydrolysis, in which a molecule of water adds to the polymer backbone, causing chain scission.Anhydrides, esters and amides are all susceptible to hydrolysis.Anyhydrides typically hydrolyze too quickly, and the uncatalyzed hydrolysis of amides is too slow, so most hydrogels that degrade hydrolytically utilize ester linkages.In order to obtain hydrolytically degradable hydrogels with physiologically relevant time scales of degradation, researchers typically functionalize PEG with degradable ester linkages using lactide or glycolide segments.

Alcohol chain ends on PEG can initiate ring-opening reactions of 3,6-dimethyl-1,4-dioxane-2,5-dione and 1,4-Dioxane-2,5-dione to generate PEG-lactide and PEG-glycolide, respectively (Scheme 2).11 The ring-opening reaction is typically catalyzed by tin(II)-2-ethylhexanoate,12 although the reaction is also easily accomplished using dimethylaminopyridine as a catalyst,13 which may be easier to remove than the residual tin.The alcohol chain ends of PEG-lactide or PEG-glycolide are easily functionalized with reactive double bonds such as acrylate and methacrylate.

Synthesis of PEG-lactide and PEG-glycolide

Scheme 2.Synthesis of PEG-lactide and PEG-glycolide.

Enzymatic Degradation

Although ester linkages are enzymatically degradable, most researchers utilize sequence-specific enzymatic degradation of peptides incorporated into hydrogels rather than non-specific enzymatic degradation of esters and amides.Hubbell′s group pioneered this approach16 by incorporating matrix metalloproteinase (MMP) sensitive linkages into hydrogels via Michael addition of cysteine-functionalized peptides across acrylates, maleimides and vinyl sulfones (Scheme 3).17

MMP-degradable linkages have also been used to tether therapeutic agents into hydrogels.For example, growth factors such as vascular endothelial growth factor (VEG-F) can be released via enzymatic degradation of an MMP-sensitive tether to induce angiogenesis.18

In both hydrolysis and enzymolysis, the rate of degradation is predetermined by the chemistry of the macromer.In hydrolysis, the degradation rate of the material is pre-engineered through the identity (e.g., hydrophobicity or hydrophilicity) and number of the hydrolysable groups, and cannot be changed once the material is fabricated.In enzymolysis, the degradation typically occurs in an area local to the cells producing the enzyme.While hydrolysis and enzymolysis are both effective methods for sustained hydrogel degradation and sustained release of therapeutic agents, the rate of release cannot be adjusted or arrested after the hydrogel is fabricated, and release is not spatially controlled.

Enzymatically degradable hydrogels via Michael addition of cysteinecontaining peptides to vinyl sulfone groups

Scheme 3.Enzymatically degradable hydrogels via Michael addition of cysteinecontaining peptides to vinyl sulfone groups.

Photodegradable Hydrogels

In contrast to hydrolytically and enzymatically degradable linkages, photodegradable linkages allow precise spatial and temporal control over degradation and release.While many researchers have reported photopolymerizable hydrogels, and photofunctionalizable hydrogels, very few reports exist of biocompatible photodegradable hydrogels.Kloxin and Kasko reported photodegradable hydrogel networks formed from 2-methoxy-5-nitro-4-(1-hydroxyethyl) phenoxybutanoate-containing PEG macromers (Scheme 4)19; the photodegradation behavior of the ortho-nitrobenzyl (o-NB) linker group is well-characterized.Hydrogels formed from the photodegradable macromer show bulk degradation upon exposure to light that is dependent on exposure time, wavelength, and light intensity.When the light is shuttered, degradation is arrested; the sample continues photolyzing once light exposure resumes. hMSCs (human mesenchymal stem cells) encapsulated in a hydrogel containing the photo-releasable cell-adhesive ligand RGDS (Arg-Gly-Asp-Ser) differentiate down the chondrogenic pathway when the RGD is released at day ten (corresponding to the downregulation of fibronectin during chondrogenesis).Surface erosion and through-gel lithography of this degradable hydrogel can be used to form features over a range of lengths scales, from 10-7 m to 10-2 m or larger.20 Partial degradation in a local area results in decreased cross-link density and increased swelling, providing a means to etch softer features onto a hydrogel that protrude out from the gel.

Photodegradable o-NB moieties incorporated into hydrogel backbone and for therapeutic agent release

Scheme 4.Photodegradable o-NB moieties incorporated into hydrogel backbone and for therapeutic agent release.

In addition to single photon photolysis, the o-NB containing hydrogels are also susceptible to two-photon photolysis, allowing for 3D etching.19-20 In single photon reactions, any area exposed to the light will react.In contrast, multi-photon lithography should occur only where multiple photons are simultaneously absorbed, which occurs at the focal volume of the light source (inset).Typical wavelengths in single photon lithography of biomaterials range from long wave UV (≥365 nM) into the visible region, while two-photon lithography uses IR light (typically ~740–800 nM).IR light is more biocompatible and less destructive to live tissues and offers greater penetration depth.The probability of twophoton absorption occurring is also tightly limited to the focal point of the focused light, rather than along the entire path of the light, providing 3D control over excitation.Both single- and multi-photon reactions have the potential to pattern materials with features smaller than 500 nM, much smaller than the size of a mammalian cell.21 This represents an unprecedented level of spatial control over hydrogel scaffold structure and chemistry.

Single photon photolysis

Figure 2.Single photon photolysis (left) occurs in the entire area of the hydrogel exposed to UV-visible light, and two photon photolysis (right) results only in the area where simultaneous absorption of two photons of IR light occurs.

The o-NB linker can also be used to tether therapeutic agents into hydrogels for delivery to live cells.Griffin et al. demonstrated the controlled release of fluorescein tethered into a hydrogel through an o-NB-PEG macromer.22 The release of this model therapeutic as a function of light exposure at multiple wavelengths (365–436 nM), intensities (5–20 mW/cm2) and durations (0–20 minutes) was quantified.While the fastest release occurs at 365 nM (which corresponds to a higher molar absorptivity of the o-NB linker at that wavelength), significant release is also seen at 405 nM; the release is easily modeled from physical constants of the molecules (such as molar absorptivity).Light attenuation allows the facile formation of chemical and mechanical gradients in these systems.

Conclusion

Poly(ethylene glycol) is a readily available, easily modifiable polymer.It has found widespread use in hydrogel fabrication, including as 2D and 3D scaffolds for tissue culture.Degradable linkages are easily introduced into PEG hydrogels.Hydrolytically degradable gels allow for sustained material degradation and/or therapeutic agent release.Degradation and release is cell-dictated in enzymatically degradable gels.Photodegradation allows for real-time user tailored external manipulation of the chemical and physical properties of hydrogels.

関連製品
Loading

参考文献

1.
Drury JL, Mooney DJ. 2003. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 24(24):4337-4351. https://doi.org/10.1016/s0142-9612(03)00340-5
2.
Lee KY, Mooney DJ. 2001. Hydrogels for Tissue Engineering. Chem. Rev.. 101(7):1869-1880. https://doi.org/10.1021/cr000108x
3.
HOFFMAN AS. Hydrogels for Biomedical Applications. 944(1):62-73. https://doi.org/10.1111/j.1749-6632.2001.tb03823.x
4.
Hoffman AS. 2002. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews. 54(1):3-12. https://doi.org/10.1016/s0169-409x(01)00239-3
5.
Tibbitt MW, Anseth KS. 2009. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol.Bioeng.. 103(4):655-663. https://doi.org/10.1002/bit.22361
6.
Lin C, Anseth KS. 2009. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm Res. 26(3):631-643. https://doi.org/10.1007/s11095-008-9801-2
7.
Richter A, Paschew G, Klatt S, Lienig J, Arndt K, Adler H. Review on Hydrogel-based pH Sensors and Microsensors. Sensors. 8(1):561-581. https://doi.org/10.3390/s8010561
8.
Ruel-Gariépy E, Leroux J. 2004. In situ-forming hydrogels?review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics. 58(2):409-426. https://doi.org/10.1016/j.ejpb.2004.03.019
9.
Yang Z, Xu B. 2007. Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J. Mater.Chem.. 17(23):2385. https://doi.org/10.1039/b702493b
10.
Zalipsky S, Harris JM. 1997. Introduction to Chemistry and Biological Applications of Poly(ethylene glycol).1-13. https://doi.org/10.1021/bk-1997-0680.ch001
11.
Davis FF. 2002. The origin of pegnology. Advanced Drug Delivery Reviews. 54(4):457-458. https://doi.org/10.1016/s0169-409x(02)00021-2
12.
Merrill E, Salzman E, Wan S, Mahmud N, Kushner L, Lindon J, Curme J. 1982. Platelet-compatible hydrophilic segmented polyurethanes from polyethylene glycols and cyclohexane diisocyanate.. Transactions-American Society for Artificial Internal Organs. 28482-487.
13.
Morpurgo M, Veronese FM, Kachensky D, Harris JM. 1996. Preparation and Characterization of Poly(ethylene glycol) Vinyl Sulfone. Bioconjugate Chem.. 7(3):363-368. https://doi.org/10.1021/bc9600224
14.
Lutolf MP, Hubbell JA. 2005. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 23(1):47-55. https://doi.org/10.1038/nbt1055
15.
Sawhney AS, Pathak CP, Hubbell JA. 1993. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(.alpha.-hydroxy acid) diacrylate macromers. Macromolecules. 26(4):581-587. https://doi.org/10.1021/ma00056a005
16.
Du YJ, Lemstra PJ, Nijenhuis AJ, Van Aert HAM, Bastiaansen C. 1995. ABA Type Copolymers of Lactide with Poly(ethylene glycol).Kinetic, Mechanistic, and Model Studies. Macromolecules. 28(7):2124-2132. https://doi.org/10.1021/ma00111a004
17.
Nederberg F, Connor E, Moller M, Glauser T, Hedrick J. 2001. Angew.Chem. Int. Edit.. 402712-2715.
18.
Kim H, Kim HW, Suh H. 2003. Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells. Biomaterials. 24(25):4671-4679. https://doi.org/10.1016/s0142-9612(03)00358-2
19.
Benoit DS, Nuttelman CR, Collins SD, Anseth KS. 2006. Synthesis and characterization of a fluvastatin-releasing hydrogel delivery system to modulate hMSC differentiation and function for bone regeneration. Biomaterials. 27(36):6102-6110. https://doi.org/10.1016/j.biomaterials.2006.06.031
20.
West JL, Hubbell JA. 1999. Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules. 32(1):241-244. https://doi.org/10.1021/ma981296k
21.
Lutolf MP, Hubbell JA. 2003. Synthesis and Physicochemical Characterization of End-Linked Poly(ethylene glycol)-co-peptide Hydrogels Formed by Michael-Type Addition. Biomacromolecules. 4(3):713-722. https://doi.org/10.1021/bm025744e
22.
Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. 2003. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proceedings of the National Academy of Sciences. 100(9):5413-5418. https://doi.org/10.1073/pnas.0737381100
23.
Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmökel H, Bezuidenhout D, Djonov V, Zilla P, et al. 2003. Cell?demanded release of VEGF from synthetic, biointeractive cell?ingrowth matrices for vascularized tissue growth. FASEB j.. 17(15):2260-2262. https://doi.org/10.1096/fj.02-1041fje
24.
Kloxin AM, Kasko AM, Salinas CN, Anseth KS. 2009. Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties. Science. 324(5923):59-63. https://doi.org/10.1126/science.1169494
25.
Kloxin AM, Tibbitt MW, Kasko AM, Fairbairn JA, Anseth KS. 2010. Tunable Hydrogels for External Manipulation of Cellular Microenvironments through Controlled Photodegradation. Adv.Mater.. 22(1):61-66. https://doi.org/10.1002/adma.200900917
26.
Wong DY, Griffin DR, Reed J, Kasko AM. 2010. Photodegradable Hydrogels to Generate Positive and Negative Features over Multiple Length Scales. Macromolecules. 43(6):2824-2831. https://doi.org/10.1021/ma9023679
27.
Kasko AM, Wong DY. 2010. Two-photon lithography in the future of cell-based therapeutics and regenerative medicine: a review of techniques for hydrogel patterning and controlled release. Future Medicinal Chemistry. 2(11):1669-1680. https://doi.org/10.4155/fmc.10.253
28.
Griffin DR, Patterson JT, Kasko AM. 2010. Photodegradation as a mechanism for controlled drug delivery. Biotechnol.Bioeng.. 107(6):1012-1019. https://doi.org/10.1002/bit.22882
ログインして続行

続きを確認するには、ログインするか、新規登録が必要です。

アカウントをお持ちではありませんか?