コンテンツへスキップ
Merck
  • Genotoxic effects and serum abnormalities in residents of regions proximal to e-waste disposal facilities in Jinghai, China.

Genotoxic effects and serum abnormalities in residents of regions proximal to e-waste disposal facilities in Jinghai, China.

Ecotoxicology and environmental safety (2014-05-03)
KeQiu Li, ShaSha Liu, QiaoYun Yang, YuXia Zhao, JunFang Zuo, Ran Li, YaQing Jing, XiaoBo He, XingHua Qiu, Guang Li, Tong Zhu
要旨

Electronic waste (e-waste) disposal is a growing problem in China, and its effects on human health are a concern. To determine the concentrations of pollutants in peripheral blood and genetic aberrations near an e-waste disposal area in Jinghai, China, blood samples were collected from 30 (age: 41±11.01 years) and 28 (age: 33±2.14 years) individuals residing within 5 and 40km of e-waste disposal facilities in Jinghai (China), respectively, during the week of October 21-28, 2011. Levels of inorganic pollutants (calcium, copper, iron, lead, magnesium, selenium, and zinc) and malondialdehyde (MDA), identities of persistent organic pollutants (POPs), micronucleus rates, and lymphocyte subsets were analyzed in individuals. Total RNA expression profiles were analyzed by group and gender. The population group living in proximity to the e-waste site displayed significantly higher mean levels of copper, zinc, lead, MDAs, POPs (B4-6DE, B7-9DE, total polychlorinated biphenyls, and BB-153). In addition, micronucleus rates of close-proximity group were higher compared with the remote group (18.27% vs. 7.32%). RNA expression of genes involved in metal ion binding and transport, oxidation/reduction, immune defense, and tumorigenesis varied between groups, with men most detrimentally affected (p<0.05). CD4(+)/CD8(+)T cell ratios, CD4(+)CD25(nt/hi)CD127(lo)regulatory T cell percentages, and CD95 expression were greater in the e-waste group (p<0.05). Residing in close proximity to e-waste disposal facilities (≤5km) may be associated with the accumulation of potentially harmful inorganic/organic compounds and gender-preferential genetic aberrations.