コンテンツへスキップ
Merck
  • Thr-774 (transmembrane segment M5), Val-920 (M8), and Glu-954 (M9) are involved in Na+ transport, and Gln-923 (M8) is essential for Na,K-ATPase activity.

Thr-774 (transmembrane segment M5), Val-920 (M8), and Glu-954 (M9) are involved in Na+ transport, and Gln-923 (M8) is essential for Na,K-ATPase activity.

The Journal of biological chemistry (2005-03-15)
Toshiaki Imagawa, Tetsuya Yamamoto, Shunji Kaya, Kazuyasu Sakaguchi, Kazuya Taniguchi
要旨

The highly conserved amino acids of rat Na,K-ATPase, Thr-774 in the transmembrane helices M5, Val-920 and Gln-923 in M8, and Glu-953 and Glu-954 in M9, the side chains of which appear to be in close proximity, were mutated, and the resulting proteins, T774A, E953A/K, and E954A/K, V920E and Q923N/E/D/L, were expressed in HeLa cells. Ouabain-resistant cell lines were obtained from T774A, V920E, E953A, and E954A, whereas Q923N/E/D/L, E953K, and E954K could only be transiently expressed as fusion proteins with an enhanced green fluorescent protein. The apparent K0.5 values for Na+, as estimated by the Na+-dependent phosphoenzyme formation (K0.5(Na,EP)) or Na,K-ATPase activity (K(0.5)(Na,ATPase)), were increased by around 2 approximately 8-fold in the case of T774A, V920E, and E954A. The apparent K0.5 values for K+, as estimated by the Na,K-ATPase (K0.5(K,ATPase)) or p-nitrophenylphosphatase activity (K0.5(K,pNPPase)), were affected only slightly by the 3 mutations, except that V920E showed a 1.7-fold increase in the K0.5(K,ATPase). The apparent K0.5 values for ATP (K0.5(EP)), as estimated by phosphorylation (a high affinity ATP effect), were increased by 1.6 approximately 2.6-fold in the case of T774A, V920E, and E954A. Those estimated by Na,K-ATPase activity (K0.5(ATPase)) and ATP-induced inhibition (K(i,0.5)(pNPPase)) of K-pNPPase activity (low affinity ATP effects) were, respectively, increased by 1.8-fold and unchanged in the case of T774A but decreased by 2- and 4.8-fold in the case of V920E and were slightly changed and increased by 1.7-fold in the case of E954A. The E953A showed little significant change in the apparent affinities. These results suggest that Gln-923 in M8 is crucial for the active transport of Na+ and/or K+ across membranes and that the side chain oxygen atom of Thr-774 in M5, the methyl group(s) of Val-920 in M8, and the carboxyl oxygen(s) of Glu-954 in M9 mainly play some role in the transport of Na+ and also in the high and low affinity ATP effects rather than the transport of K+.