コンテンツへスキップ
Merck
  • Rearrangement of L-2-hydroxyglutarate to L-threo-3-methylmalate catalyzed by adenosylcobalamin-dependent glutamate mutase.

Rearrangement of L-2-hydroxyglutarate to L-threo-3-methylmalate catalyzed by adenosylcobalamin-dependent glutamate mutase.

Biochemistry (2000-08-24)
I Roymoulik, N Moon, W R Dunham, D P Ballou, E N Marsh
要旨

Adenosylcobalamin-dependent enzymes catalyze a variety of chemically difficult isomerizations in which a nonacidic hydrogen on one carbon is interchanged with an electron-withdrawing group on an adjacent carbon. We describe a new isomerization, that of L-2-hydroxyglutarate to L-threo-3-methylmalate, involving the migration of the carbinol carbon. This reaction is catalyzed by glutamate mutase, but k(cat) = 0.05 s(-)(1) is much lower than that for the natural substrate, L-glutamate (k(cat) = 5.6 s(-)(1)). EPR spectroscopy confirms that the major organic radical that accumulates on the enzyme is the C-4 radical of L-2-hydroxyglutarate. Pre-steady-state kinetic measurements revealed that L-2-hydroxyglutarate-induced homolysis of AdoCbl occurs very rapidly, with a rate constant approaching those measured previously with glutamate and methylaspartate as substrates. These observations are consistent with the rearrangement of the 2-hydroxyglutaryl radical being the rate-determining step in the reaction. The slow rearrangement of the 2-hydroxyglutaryl radical can be attributed to the poor stabilization by the hydroxyl group of the migrating glycolyl moiety of the radical transiently formed on the migrating carbon. In contrast, with the normal substrate the migrating carbon atom bears a nitrogen substituent that better stabilizes the analogous glycyl moiety. These studies point to the importance of the functional groups attached to the migrating carbon in facilitating the carbon skeleton rearrangement.