コンテンツへスキップ
Merck
  • Intracellular zinc signaling influences NMDA receptor function by enhancing the interaction of ZnT1 with GluN2A.

Intracellular zinc signaling influences NMDA receptor function by enhancing the interaction of ZnT1 with GluN2A.

Neuroscience letters (2022-10-07)
Rebecca Krall, Jenna R Gale, Madeline M Ross, Thanos Tzounopoulos, Elias Aizenman
要旨

Zinc, loaded into glutamate-containing presynaptic vesicles and released into the synapse in an activity-dependent manner, modulates neurotransmission through its actions on postsynaptic targets, prominently via high-affinity inhibition of GluN2A-containing NMDA receptors. Recently, we identified a postsynaptic transport mechanism that regulates endogenous zinc inhibition of NMDARs. In this new model of zinc regulation, the postsynaptic transporter ZnT1 mediates zinc inhibition of NMDARs by binding to GluN2A. Through this interaction, ZnT1, a transporter that moves zinc from the cytoplasm to the extracellular domain, generates a zinc microdomain that modulates NMDAR-mediated neurotransmission. As ZnT1 expression is transcriptionally driven by the metal-responsive transcription factor 1 (MTF-1), we found that intracellular zinc strongly drives MTF-1 in cortical neurons in vitro and increases the number of GluN2A-ZnT1 interactions, thereby enhancing tonic zinc inhibition of NMDAR-mediated currents. Importantly, this effect is absent when the interaction between GluN2A and ZnT1 is disrupted by a cell-permeable peptide. These results suggest that zinc-regulated gene expression can dynamically regulate NMDAR-mediated synaptic processes.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
モノクロナール抗β-アクチン マウス宿主抗体, clone AC-15, ascites fluid
Sigma-Aldrich
Monoclonal Anti-Glun2A/Nr2A antibody produced in mouse, clone S327-95, purified immunoglobulin