コンテンツへスキップ
Merck

Impact of dietary vitamin A on striatal function in adult rats.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2023-07-01)
Anaïs Marie, Rémi Kinet, Jean-Christophe Helbling, Morgane Darricau, Serge Alfos, Mathieu Di Miceli, Maria-Florencia Angelo, Aline Foury, Emmanuel Richard, Pierre Trifilieff, Nicolas P Mallet, Clementine Bosch-Bouju
要旨

The striatum is a brain structure involved in the control of voluntary movement. Striatum contains high amounts of retinoic acid, the active metabolite of vitamin A, as well as retinoid receptors, RARβ and RXRγ. Previous studies revealed that disruption of retinoid signaling initiated during development is deleterious for striatal physiology and related motor functions. However, the alteration of retinoid signaling, and the importance of vitamin A supply during adulthood on striatal physiology and function has never been established. In the present study, we investigated the impact of vitamin A supply on striatal function. Adult Sprague-Dawley rats were fed with three specific diets, either sub-deficient, sufficient, or enriched in vitamin A (0.4, 5, and 20 international units [IU] of retinol per g of diet, respectively) for 6 months. We first validated that vitamin A sub-deficient diet in adult rats constitutes a physiological model of retinoid signaling reduction in the striatum. We then revealed subtle alterations of fine motor skills in sub-deficient rats using a new behavioral apparatus specifically designed to test forepaw reach-and-grasp skills relying on striatal function. Finally, we showed using qPCR analysis and immunofluorescence that the striatal dopaminergic system per se was not affected by vitamin A sub-deficiency at adult age. Rather, cholinergic synthesis in the striatum and μ-opioid receptor expression in striosomes sub-territories were the most affected by vitamin A sub-deficiency starting at adulthood. Taken together these results revealed that retinoid signaling alteration at adulthood is associated with motor learning deficits together with discrete neurobiological alterations in the striatum.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
抗コリンアセチルトランスフェラーゼ抗体, Chemicon®, from goat
Sigma-Aldrich
抗ALDH1A1 ウサギ宿主抗体, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution