コンテンツへスキップ
Merck
  • Water-soluble variant of human Lynx1 induces cell cycle arrest and apoptosis in lung cancer cells via modulation of α7 nicotinic acetylcholine receptors.

Water-soluble variant of human Lynx1 induces cell cycle arrest and apoptosis in lung cancer cells via modulation of α7 nicotinic acetylcholine receptors.

PloS one (2019-06-01)
Maxim Bychkov, Zakhar Shenkarev, Mikhail Shulepko, Olga Shlepova, Mikhail Kirpichnikov, Ekaterina Lyukmanova
要旨

Lynx1 is the first three-finger prototoxin found in the mammalian central nervous system. It is a GPI-anchored protein modulating nicotinic acetylcholine receptors (nAChRs) in the brain. Besides the brain, the Lynx1 protein was found in the lung and kidney. Endogenous Lynx1 controls the nicotine-induced up-regulation of the expression of α7 type nAChRs in lung adenocarcinoma A549 cells as well as the cell growth. Here, we analyzed the Lynx1 expression in the set of human epithelial cells. The Lynx1 expression both at the mRNA and protein level was detected in normal oral keratinocytes, and lung, colon, epidermal, and breast cancer cells, but not in embryonic kidney cells. Co-localization of Lynx1 with α7-nAChRs was revealed in a cell membrane for lung adenocarcinoma A549 and colon carcinoma HT-29 cells, but not for breast adenocarcinoma MCF-7 and epidermoid carcinoma A431 cells. The recombinant water-soluble variant of Lynx1 without a GPI-anchor (ws-Lynx1) inhibited the growth of A549 cells causing cell cycle arrest via modulation of α7-nAChRs and activation of different intracellular signaling cascades, including PKC/IP3, MAP/ERK, p38, and JNK pathways. A549 cells treatment with ws-Lynx1 resulted in phosphorylation of the proapoptotic tumor suppressor protein p53 and different kinases participated in the regulation of gene transcription, cell growth, adhesion, and differentiation. Externalization of phosphatidylserine, an early apoptosis marker, observed by flow cytometry, confirmed the induction of apoptosis in A549 cells upon the ws-Lynx1 treatment. Our data revealed the ability of ws-Lynx1 to regulate homeostasis of epithelial cancer cells.