コンテンツへスキップ
Merck
  • Primary green turtle (Chelonia mydas) skin fibroblasts as an in vitro model for assessing genotoxicity and oxidative stress.

Primary green turtle (Chelonia mydas) skin fibroblasts as an in vitro model for assessing genotoxicity and oxidative stress.

Aquatic toxicology (Amsterdam, Netherlands) (2018-12-05)
Kimberly A Finlayson, Frederic D L Leusch, Jason P van de Merwe
要旨

Little is known about the effects of contaminants that accumulate in sea turtles. When in vivo exposure studies have ethical and logistical barriers, as is the case with sea turtles, in vitro tools can provide important information on the effects of contaminants. Several in vitro studies have assessed cytotoxicity of contaminants to sea turtles cells, however to gain a more refined mechanistic understanding of the effects of contaminants, sub-lethal effects also require investigation. Considering the complex mixture of contaminants that sea turtles are potentially exposed to, high throughput testing methods are necessary so that a large number of contaminants (and mixtures) can be rapidly tested. This study examined oxidative stress (reactive oxygen species production) and genotoxicity (micronucleus formation) in primary green turtle skin fibroblasts in response to 16 organic and inorganic contaminants found in coastal environments. Significant induction of oxidative stress was found with Cu, Co, Cr, and Hg. Significant effects on genotoxicity were found with Cu, Co, Cr, Hg, Pb and metolachlor. Effect concentrations from the bioassays were used in a simple risk assessment of turtles worldwide using accumulation values from the literature to identify populations at risk. Cu, Co, Cr and Hg were identified as posing the biggest threat to sea turtles. This study demonstrated the validity of using primary turtle cell cultures in the assessment of risk associated with a large number of contaminants using a high-throughput toxicity testing format.