Skip to Content
Merck
  • Microparticles Carrying Peroxisome Proliferator-Activated Receptor Alpha Restore the Reduced Differentiation and Functionality of Bone Marrow-Derived Cells Induced by High-Fat Diet.

Microparticles Carrying Peroxisome Proliferator-Activated Receptor Alpha Restore the Reduced Differentiation and Functionality of Bone Marrow-Derived Cells Induced by High-Fat Diet.

Stem cells translational medicine (2017-10-29)
Luisa Vergori, Emilie Lauret, Raffaella Soleti, Ramaroson Andriantsitohaina, M Carmen Martinez
ABSTRACT

Metabolic pathologies such as diabetes and obesity are associated with decreased level of circulating and bone marrow (BM)-derived endothelial progenitor cells (EPCs). It is known that activation of peroxisome proliferator-activated receptor alpha (PPARα) may stimulate cell differentiation. In addition, microparticles (MPs), small membrane vesicles produced by activated and apoptotic cells, are able to reprogram EPCs. Here, we evaluated the role of MPs carrying PPARα on both phenotype and function of progenitor cells from mice fed with a high-fat diet (HFD). HFD reduced circulating EPCs and, after 7 days of culture, BM-derived EPCs and monocytic progenitor cells from HFD-fed mice displayed impaired differentiation. At the same time, we show that MPs bearing PPARα, MPs

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Phenylindole, technical grade, 95%
Sigma-Aldrich
GW7647, ≥98% (HPLC)