Skip to Content
Merck
  • 2-Arachidonoylglycerol Reduces Proteoglycans and Enhances Remyelination in a Progressive Model of Demyelination.

2-Arachidonoylglycerol Reduces Proteoglycans and Enhances Remyelination in a Progressive Model of Demyelination.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2017-07-29)
Ana Feliú, Itziar Bonilla Del Río, Francisco Javier Carrillo-Salinas, Gloria Hernández-Torres, Leyre Mestre, Nagore Puente, Silvia Ortega-Gutiérrez, Maria L López-Rodríguez, Pedro Grandes, Miriam Mecha, Carmen Guaza
ABSTRACT

The failure to undergo remyelination is a critical impediment to recovery in multiple sclerosis. Chondroitin sulfate proteoglycans (CSPGs) accumulate at demyelinating lesions creating a nonpermissive environment that impairs axon regeneration and remyelination. Here, we reveal a new role for 2-arachidonoylglycerol (2-AG), the major CNS endocannabinoid, in the modulation of CSPGs deposition in a progressive model of multiple sclerosis, the Theiler's murine encephalomyelitis virus-induced demyelinating disease. Treatment with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-AG degradation in the mouse CNS, modulates neuroinflammation and reduces CSPGs accumulation and astrogliosis around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. Inhibition of 2-AG hydrolysis augments the number of mature oligodendrocytes and increases MBP, leading to remyelination and functional recovery of mice. Our findings establish a mechanism for 2-AG promotion of remyelination with implications in axonal repair in CNS demyelinating pathologies.SIGNIFICANCE STATEMENT The deposition of chondroitin sulfate proteoglycans contributes to the failure in remyelination associated with multiple sclerosis. Here we unveil a new role for 2-arachidonoylglycerol, the major CNS endocannabinoid, in the modulation of chondroitin sulfate proteoglycan accumulation in Theiler's murine encephalomyelitis virus-induced demyelinating disease. The treatment during the chronic phase with a potent reversible inhibitor of the enzyme monoacylglycerol lipase, which accounts for 85% of the 2-arachidonoylglycerol degradation in the mouse CNS, modulates neuroinflammation and reduces chondroitin sulfate proteoglycan deposition around demyelinated lesions in the spinal cord of Theiler's murine encephalomyelitis virus-infected mice. The increased 2-arachidonoylglycerol tone promotes remyelination in a model of progressive multiple sclerosis ameliorating motor dysfunction.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-VIM antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-Glial Fibrillary Acidic Protein antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Anti-Neurofilament H (200 kDa) Antibody, from rabbit, purified by affinity chromatography
Sigma-Aldrich
Anti-Myelin Basic Protein Antibody, a.a. 129-138, clone 1, culture supernatant, clone 1, Chemicon®
Sigma-Aldrich
AM251, >98% (HPLC), solid
Sigma-Aldrich
Monoclonal Anti-Chondroitin Sulfate antibody produced in mouse, clone CS-56, ascites fluid
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, clone B-5-1-2, ascites fluid
Sigma-Aldrich
AM630, ≥90% (HPLC)
Sigma-Aldrich
Anti-Phosphacan Antibody, clone 122.2, ascites fluid, clone 122.2, Chemicon®