- Phylogenetic analysis of the ING family of PHD finger proteins.
Phylogenetic analysis of the ING family of PHD finger proteins.
Since the discovery of ING1 class II tumor suppressors in 1996, five different ING genes (ING1 to ING5) encoding proteins with highly conserved plant homeodomain (PHD) motifs and several splicing isoforms of the ING1 and ING2 gene have been identified. The ING family functions in DNA repair and apoptosis in response to UV damage through binding to proliferating cell nuclear antigen (PCNA); chromatin remodeling and regulation of gene expression through regulating and/or targeting histone acetyltransferase/deacetylase (HAT/HDAC) activities; binding targets of rare phosphatidylinositol phosphates (PtdInsPs) that function in DNA damage-initiated stress signaling; and regulating brain tumor angiogenesis through transcriptional repression of NF-KB-responsive genes. To elucidate the evolutionary history of ING proteins and summarize what is known about regions highly conserved in the ING family members, we have examined the sequences and phylogenetic relationships of ING proteins across taxonomically diverse organisms. We have identified novel ING family members in rats, frogs, fish, mosquitoes, fruit flies, worms, fungi, and plants. We have also clarified the naming and classification of ING proteins based on our phylogenetic analysis to allow better understanding of the ING protein family. Using sequence similarities, we have identified novel regions and motifs of unknown function that are conserved across family members. An evolutionary history for the ING family of PHD finger proteins is presented that indicates that five ING genes are present in vertebrates. Three of these may be paralogs of ING genes found in arthropods, whereas nematodes, fungi, and green plants contain ING genes that have general features of the vertebrate ING family.