Skip to Content
Merck
  • Role of copper and the copper-related protein CUTA in mediating APP processing and Aβ generation.

Role of copper and the copper-related protein CUTA in mediating APP processing and Aβ generation.

Neurobiology of aging (2015-01-06)
Ping Hou, Guiying Liu, Yingjun Zhao, Zhun Shi, Qiuyang Zheng, Guojun Bu, Huaxi Xu, Yun-wu Zhang
ABSTRACT

One major pathologic hallmark and trigger of Alzheimer's disease (AD) is overproduction and accumulation of β-amyloid (Aβ) species in the brain. Aβ is derived from β-amyloid precursor protein (APP) through sequential cleavages by β- and γ-secretases. Abnormal copper homeostasis also contributes to AD pathogenesis. Recently, we find that a copper-related protein, CutA divalent cation tolerance homolog of Escherichia coli (CUTA), interacts with the β-secretase β-site APP cleaving enzyme 1 (BACE1) and inhibits APP β-processing and Aβ generation. Herein, we further found that overexpression of CUTA increases intracellular copper level, whereas copper treatments promote CUTA expression. We also confirmed that copper treatments promote APP expression and Aβ secretion. In addition, copper treatments promoted the increase of Aβ secretion induced by CUTA downregulation but had no effect on CUTA-β-site APP cleaving enzyme 1 interaction. On the other hand, CUTA overexpression ameliorated copper-induced Aβ secretion but had no effect on APP expression. Moreover, we found that Aβ treatments can reduce both CUTA and copper levels in mouse primary neurons. Consistently, both CUTA and copper levels were decreased in the hippocampus of APP/PS1 AD mouse brain. Together, our results reveal a reciprocal modulation of copper and CUTA and suggest that both regulate Aβ generation through different mechanisms, although Aβ mutually affects copper and CUTA levels.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human CUTA
Sigma-Aldrich
Hydrogen peroxide solution, JIS special grade, 30.0-35.5%
Sigma-Aldrich
Hydrogen peroxide solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
Nitric acid, ACS reagent, ≥90.0%
Sigma-Aldrich
Nitric acid, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Nitric acid, 60.0-62.0%, suitable for determination of toxic metals, density: 1.38
Sigma-Aldrich
Nitric acid, 1 M
Sigma-Aldrich
Nitric acid, JIS special grade, ≥97.0%, fuming, density: 1.52
Sigma-Aldrich
Nitric acid, SAJ first grade, 69-70%, density: 1.42
Sigma-Aldrich
Nitric acid, 60.0-62.0%, SAJ super special grade, density: 1.38
Sigma-Aldrich
Nitric acid, SAJ first grade, ≥97.0%, fuming, density: 1.52
Sigma-Aldrich
Nitric acid, SAJ first grade, 90.0-94.0%, fuming, density: 1.50
Sigma-Aldrich
Nitric acid, JIS special grade, 69.0-70.0%, density: 1.42
Sigma-Aldrich
Nitric acid, JIS special grade, 90.0-94.0%, fuming, density: 1.50
Sigma-Aldrich
Nitric acid, JIS special grade, 65.0-66.0%, density: 1.40
Sigma-Aldrich
Nitric acid, SAJ first grade, 65.0-66.0%, density: 1.40
Sigma-Aldrich
Nitric acid, 0.1 M
Sigma-Aldrich
Nitric acid, JIS special grade, 60.0-61.0%, density: 1.38
Sigma-Aldrich
Nitric acid, SAJ first grade, 60.0-62.0%, density: 1.38
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Cuta