Skip to Content
Merck
  • Condensed tannin biosynthesis and polymerization synergistically condition carbon use, defense, sink strength and growth in Populus.

Condensed tannin biosynthesis and polymerization synergistically condition carbon use, defense, sink strength and growth in Populus.

Tree physiology (2013-12-18)
Scott A Harding, Liang-Jiao Xue, Lei Du, Batbayar Nyamdari, Richard L Lindroth, Robert Sykes, Mark F Davis, Chung-Jui Tsai
ABSTRACT

The partitioning of carbon for growth, storage and constitutive chemical defenses is widely framed in terms of a hypothetical sink-source differential that varies with nutrient supply. According to this framework, phenolics accrual is passive and occurs in source leaves when normal sink growth is not sustainable due to a nutrient limitation. In assessing this framework, we present gene and metabolite evidence that condensed tannin (CT) accrual is strongest in sink leaves and sequesters carbon in a way that impinges upon foliar sink strength and upon phenolic glycoside (PG) accrual in Populus. The work was based on two Populus fremontii × angustifolia backcross lines with contrasting rates of CT accrual and growth, and equally large foliar PG reserves. However, foliar PG accrual was developmentally delayed in the high-CT, slow-growth line (SG), and nitrogen-limitation led to increased foliar PG accrual only in the low-CT, fast-growth line (FG). Metabolite profiling of developing leaves indicated comparatively carbon-limited amino acid metabolism, depletion of several Krebs cycle intermediates and reduced organ sink strength in SG. Gene profiling indicated that CT synthesis decreased as leaves expanded and PGs increased. A most striking finding was that the nitrogenous monoamine phenylethylamine accumulated only in leaves of SG plants. The potential negative impact of CT hyper-accumulation on foliar sink strength, as well as a mechanism for phenylethylamine involvement in CT polymerization in Populus are discussed. Starch accrual in source leaves and CT accrual in sink leaves of SG may both contribute to the maintenance of a slow-growth phenotype suited to survival in nutrient-poor habitats.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic anhydride, JIS special grade
Pricing and availability is not currently available.
Sigma-Aldrich
Acetic anhydride, SAJ first grade, ≥93.0%
Pricing and availability is not currently available.
Sigma-Aldrich
Acetic anhydride, Arxada quality, ≥99.5% (GC)
Pricing and availability is not currently available.
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, ≥98%
Pricing and availability is not currently available.
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioXtra, ≥99%
Pricing and availability is not currently available.
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, for molecular biology, ≥99%
Pricing and availability is not currently available.
Supelco
Acetic anhydride, for GC derivatization, LiChropur, ≥99.0%
Pricing and availability is not currently available.
Sigma-Aldrich
Acetic anhydride, ACS reagent, ≥98.0%
Pricing and availability is not currently available.
Sigma-Aldrich
Trifluoroacetamide, 97%
Pricing and availability is not currently available.
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, ≥96.0% (AT)
Pricing and availability is not currently available.
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioUltra, for molecular biology, ≥99.0% (AT)
Pricing and availability is not currently available.
Sigma-Aldrich
Acetic anhydride, ReagentPlus®, ≥99%
Pricing and availability is not currently available.
Supelco
Hexadecyltrimethylammonium bromide, analytical standard
Pricing and availability is not currently available.
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Pricing and availability is not currently available.
SAFC
Hexadecyltrimethylammonium bromide, USP/NF
Pricing and availability is not currently available.
Sigma-Aldrich
Acetic anhydride
Pricing and availability is not currently available.
Sigma-Aldrich
Acetic anhydride, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99% (GC)
Pricing and availability is not currently available.
Supelco
Hexadecyltrimethylammonium bromide, suitable for ion pair chromatography, LiChropur
Pricing and availability is not currently available.
Sigma-Aldrich
Acetic anhydride, 99.5%
Pricing and availability is not currently available.
Sigma-Aldrich
Chloroform, suitable for HPLC
Pricing and availability is not currently available.
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Pricing and availability is not currently available.
Sigma-Aldrich
Chloroform, SAJ super special grade, ≥99.0%
Pricing and availability is not currently available.
Sigma-Aldrich
Chloroform, SAJ first grade, ≥99.0%, contains 0.4-0.8% ethanol
Pricing and availability is not currently available.
Sigma-Aldrich
Chloroform, JIS 300, ≥99.0%, for residue analysis
Pricing and availability is not currently available.
Sigma-Aldrich
Adonitol, ≥99%
Pricing and availability is not currently available.
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Pricing and availability is not currently available.
Supelco
N-Methyl-bis(trifluoroacetamide), for GC derivatization, LiChropur, ≥97.0% (GC)
Pricing and availability is not currently available.
Sigma-Aldrich
Adonitol, BioXtra, ≥99.0% (HPLC)
Pricing and availability is not currently available.
Supelco
N-Methyl-bis(trifluoroacetamide), for GC derivatization, LiChropur, ≥99.0% (GC)
Pricing and availability is not currently available.
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains amylenes as stabilizer
Pricing and availability is not currently available.