Skip to Content
Merck
  • Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite.

Dispersive micro-solid-phase extraction of benzodiazepines from biological fluids based on polyaniline/magnetic nanoparticles composite.

Analytica chimica acta (2014-08-31)
Ali Akbar Asgharinezhad, Homeira Ebrahimzadeh, Fatemeh Mirbabaei, Narges Mollazadeh, Nafiseh Shekari
ABSTRACT

In this study, diverse types of Fe3O4 nanocomposites modified by polyaniline, polypyrrole, and aniline-pyrrole copolymer were synthesized through chemical oxidative polymerization process for dispersive-μ-solid phase extraction (D-μ-SPE) in the presence of various dopants. The results showed that the nanocomposite modified by polyaniline with p-toluene sulfonic acid as a dopant demonstrated higher extraction efficiency for lorazepam (LRZ) and nitrazepam (NRZ). Also the synthesized magnetic sorbents were characterized. The nanocomposite sorbent in combination with high performance liquid chromatography-UV detection was applied for the extraction, preconcentration and determination of lorazepam and nitrazepam in urine and plasma samples. Different parameters influencing the extraction efficiency including: sample pH, amount of sorbent, sorption time, elution solvent and its volume, salt content, and elution time were optimized. The obtained optimal conditions were: sample pH, 6; amount of sorbent, 5 mg; sorption time, 5.0 min; elution solvent and its volume, 0.5 mM cethyltrimethyl ammonium bromide in acetonitrile, 150 μL; elution time, 2.0 min and without addition of NaCl. The calibration curves were linear in the concentration range of 1-2000 μg L(-1). The limits of detection (LODs) were achieved in the range of 0.5-1.8 μg L(-1) for NRZ and 0.2-2.0 μg L(-1) for LRZ, respectively. The percent of extraction recoveries and relative standard deviations (n=5) were in the range of 84.0-99.0, 6.1-7.8 for NRZ and 90.0-99.0, 4.1-7.0 for LRZ, respectively. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of NRZ and LRZ in human urine and plasma samples.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetone, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium hydroxide solution, 0.1 M
Sigma-Aldrich
Sodium hydroxide solution, 4 M
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Aniline, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium hydroxide solution, 7 M
Sigma-Aldrich
1-Propanol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Acetone, ≥99.5%, for residue analysis
Sigma-Aldrich
Aniline, JIS special grade, ≥99.0%
Sigma-Aldrich
Sodium hydroxide solution, 6 M
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Sodium hydroxide solution, 2 M
Sigma-Aldrich
Sodium hydroxide solution, 0.01 M
Sigma-Aldrich
Sodium hydroxide solution, 1 M
Sigma-Aldrich
Acetone, for residue analysis, ≥99.5%
Sigma-Aldrich
Sodium hydroxide solution, 0.05 M
Sigma-Aldrich
Sodium hydroxide solution, 0.02 M
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Acetone, for residue analysis, JIS 5000
Sigma-Aldrich
Acetone, suitable for HPLC
Sigma-Aldrich
Acetone, JIS special grade, ≥99.5%
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Iron(III) chloride, sublimed grade, ≥99.9% trace metals basis
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%
Sigma-Aldrich
1-Propanol, JIS special grade