Skip to Content
Merck
  • Regulated stability of eukaryotic elongation factor 2 kinase requires intrinsic but not ongoing activity.

Regulated stability of eukaryotic elongation factor 2 kinase requires intrinsic but not ongoing activity.

The Biochemical journal (2015-02-12)
Xuemin Wang, Jianling Xie, Sergio Regufe da Mota, Claire E Moore, Christopher G Proud
ABSTRACT

Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical protein kinase which negatively regulates protein synthesis, is activated under stress conditions and plays a role in cytoprotection, e.g. in cancer cells. It is regarded as a possible target for therapeutic intervention in solid tumours. Earlier studies showed that eEF2K is degraded by a proteasome-dependent pathway in response to genotoxic stress and that this requires a phosphodegron that includes an autophosphorylation site. Thus, application of eEF2K inhibitors would stabilize eEF2K, partially negating the effects of inhibiting its activity. In the present study, we show that under a range of other stress conditions, including acidosis or treatment of cells with 2-deoxyglucose, eEF2K is also degraded. However, in these settings, the previously identified phosphodegron is not required for its degradation. Nevertheless, kinase-dead and other activity-deficient mutants of eEF2K are stabilized, as is a mutant lacking a critical autophosphorylation site (Thr348 in eEF2K), which is thought to be required for eEF2K and other α-kinases to achieve their active conformations. In contrast, application of small-molecule eEF2K inhibitors does not stabilize the protein. Our data suggest that achieving an active conformation, rather than eEF2K activity per se, is required for its susceptibility to degradation. Additional degrons and E3 ligases beyond those already identified are probably involved in regulating eEF2K levels. Our findings have significant implications for therapeutic targeting of eEF2K, e.g. in oncology.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium dodecyl sulfate, SAJ first grade, ≥95.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 3% in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Hydrochloric acid solution, 2 M
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Hydrochloric acid, SAJ super special grade, ≥35.0%
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid solution, SAJ first grade, 9.5-10.0%
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Sodium dodecyl sulfate, SAJ special grade, ≥97.0%
Sigma-Aldrich
Hydrochloric acid, suitable for determination of toxic metals, ≥35.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.1 M
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets