Skip to Content
Merck
  • Ethanol disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated Rho/ROCK activation.

Ethanol disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated Rho/ROCK activation.

American journal of physiology. Gastrointestinal and liver physiology (2014-02-22)
Elhaseen Elamin, Ad Masclee, Jan Dekker, Daisy Jonkers
ABSTRACT

Evidence indicates that ethanol-induced intestinal barrier dysfunction and subsequent endotoxemia plays a key role in the pathogenesis of alcoholic liver disease. Recently, it has been demonstrated that ethanol induces RhoA kinase activation in intestinal epithelium, thereby disrupting barrier integrity. In this study, the role of a rise in intracellular calcium concentration ([Ca(2+)]i) in ethanol-induced Rho-associated coiled coil-forming kinase (Rho/ROCK) activation and barrier disruption was investigated in Caco-2 cell monolayers. Treatment of Caco-2 monolayers with 40 mmol/l ethanol induced [Ca(2+)]i release as indicated by increased relative fluorescent units of Fluo-3 from 0.06 ± 0.02 to 2.27 ± 1.96 (P < 0.0001). Pretreatment with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) completely inhibited the release, whereas the inositol 1,4,5-triphosphate receptor (IP3R)-antagonist, Xestospongin C, partially inhibited the ethanol-induced [Ca(2+)]i release (from 2.27 ± 1.96 to 0.03 ± 0.01; P < 0.0001 and from 2.27 ± 1.96 to 1.19 ± 1.80; P < 0.001, respectively). The rise in [Ca(2+)]i was paralleled with increased intestinal permeability, which could be attenuated by either BAPTA-AM or Xestospongin C. Furthermore, ethanol induced Rho/ROCK activation, as indicated by increased phosphorylation of myosin-binding subunit, which could be prevented either by BAPTA, Xestospongin C, or the specific Rho/ROCK inhibitor Y27632. Finally, inhibition of Rho/ROCK kinase by Y27632 ameliorated the ethanol-induced redistribution of zonula occluden-1, adherens junction proteins including E-cadherin and β-catenin, and also disorganization of F-actin. These findings suggest that ethanol-induced [Ca(2+)]i release, mediated by stimulating IP3R-gated Ca(2+) channel, activates Rho/ROCK in Caco-2 cells, thereby contributing to ethanol-induced intestinal barrier dysfunction.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Alcohol dehydrated, ≥85.0%
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Supelco
Ethanol-20 (10 ampules/kit), 20 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol-500, 500 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol-25, 25 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol-400 (10 ampules/kit), 400 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Reagent Alcohol, reagent grade
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, BioUltra, for molecular biology, ≥99.0% (T)
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, ≥97.0%
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, for molecular biology, ≥97.0%
Sigma-Aldrich
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, BioXtra, ≥97 .0%
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.005% water
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Supelco
Ethanol Calibration Kit, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Ethanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Ethanol, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethyl alcohol, denatured, reagent grade
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Supelco
Ethanol-150, 150 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®