Skip to Content
Merck
  • Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation.

Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation.

International journal of pharmaceutics (2013-07-09)
May S Freag, Yosra S R Elnaggar, Ossama Y Abdallah
ABSTRACT

Scanty solubility and permeability of diosmin (DSN) are perpetrators for its poor oral absorption and high inter-subject variation. This article investigated the potential of novel DSN nanosuspensions to improve drug delivery characteristics. Bottom-up nanoprecipitation technique has been employed for nanosuspension development. Variables optimized encompassed polymeric stabilizer type, DSN: stabilizer ratio, excess stabilizer removal, spray drying, and mannitol incorporation. In vitro characterization included particle size (PS), infrared spectroscopy (IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM), and dissolution profile. Ex vivo permeation was assessed in rats using non-everted sac technique and HPLC. Optimal DSN nanosuspension (DSN:hydroxypropylmethyl cellulose HPMC 2:1) was prepared with acid base neutralization technique. The formula exhibited the lowest PS (336 nm) with 99.9% drug loading and enhanced reconstitution properties after mannitol incorporation. SEM and TEM revealed discrete, oval drug nanocrystals with higher surface coverage with HPMC compared to MC. DSN nanosuspension demonstrated a significant enhancement in DSN dissolution (100% dissolved) compared to crude drug (51%). Permeation studies revealed 89% DSN permeated from the nanosuspension after 120 min compared to non-detected amounts from drug suspension. Conclusively, novel DSN nanosuspension could successful improve its dissolution and permeation characteristics with promising consequences of better drug delivery.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~86,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~10,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~120,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~90,000
Sigma-Aldrich
Methyl cellulose, medium viscosity, Methoxyl content 27.5-31.5 %
Sigma-Aldrich
Methyl cellulose, tested according to Ph. Eur.
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose
Sigma-Aldrich
Methyl cellulose, 27.5-31.5% methoxyl basis
Sigma-Aldrich
Methyl cellulose, viscosity: 4,000 cP
Sigma-Aldrich
Methyl cellulose, viscosity: 25 cP
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Methyl cellulose, 26.0-33.0% (Methoxy group (dry basis)), meets USP testing specifications, viscosity: 1,500 cP
Sigma-Aldrich
Methyl cellulose, meets USP testing specifications, 26.0-33.0% (methoxyl group, on Dry Basis), viscosity: 400 cP
Sigma-Aldrich
Methyl cellulose, 27.5-31.5% (Methoxyl content), viscosity: 400 cP
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Methyl cellulose, viscosity: 15 cP
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Methyl cellulose, viscosity: 1,500 cP
Sigma-Aldrich
Methyl cellulose, viscosity: 15 cP, BioReagent, suitable for cell culture
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
Methyl cellulose, viscosity 3000-5500 mPa.s, 2 % in H2O(20 °C)
Supelco
Diosmin, analytical standard