Skip to Content
Merck

Nitric oxide increases oxidative phosphorylation efficiency.

Journal of bioenergetics and biomembranes (2007-04-21)
Pascaline Clerc, Michel Rigoulet, Xavier Leverve, Eric Fontaine
ABSTRACT

We have studied the effect of nitric oxide (NO) and potassium cyanide (KCN) on oxidative phosphorylation efficiency. Concentrations of NO or KCN that decrease resting oxygen consumption by 10-20% increased oxidative phosphorylation efficiency in mitochondria oxidizing succinate or palmitoyl-L-carnitine, but not in mitochondria oxidizing malate plus glutamate. When compared to malate plus glutamate, succinate or palmitoyl-L-carnitine reduced the redox state of cytochrome oxidase. The relationship between membrane potential and oxygen consumption rates was measured at different degrees of ATP synthesis. The use of malate plus glutamate instead of succinate (that changes the H(+)/2e(-) stoichiometry of the respiratory chain) affected the relationship, whereas a change in membrane permeability did not affect it. NO or KCN also affected the relationship, suggesting that they change the H(+)/2e(-) stoichiometry of the respiratory chain. We propose that NO may be a natural short-term regulator of mitochondrial physiology that increases oxidative phosphorylation efficiency in a redox-sensitive manner by decreasing the slipping in the proton pumps.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium cyanide, BioUltra, ≥98.0% (AT)