- Bicarbonate induces high-level resistance to the human antimicrobial peptide LL-37 in Staphylococcus aureus small colony variants.
Bicarbonate induces high-level resistance to the human antimicrobial peptide LL-37 in Staphylococcus aureus small colony variants.
Staphylococcus aureus small colony variants (SCVs) cause persistent infections and are resistant to cationic antibiotics. Antimicrobial peptides (AMPs) have been suggested as promising alternatives for treating antibiotic-resistant bacteria. We investigated the capacity of the human cationic AMP LL-37 to kill SCVs in the presence of physiological concentrations of bicarbonate, which are reported to alter bacterial membrane permeability and change resistance of bacteria to AMPs. MBCs of LL-37 for S. aureus SCVs with mutations in different genes in the presence and absence of bicarbonate were determined. In the absence of bicarbonate, SCVs of S. aureus strains LS-1 and 8325-4 had the same level of resistance to LL-37 as the parental strain (8 mg/L). In the presence of bicarbonate, hemB, menD and aroD SCVs of LS-1 had high-level resistance to LL-37 (≥128 mg/L) compared with the parental strain (16 mg/L). However, only the aroD SCV of strain 8324-5 showed high-level resistance. 8325-4 harbours mutations in two genes, tcaR and rsbU, which are involved in antimicrobial sensing and the stress response, respectively. When rsbU was repaired in 8325-4 it displayed high-level resistance to LL-37 in the presence of bicarbonate. This phenotype was lost when tcaR was also repaired, demonstrating that RsbU and TcaR are involved in LL-37 resistance in the presence of bicarbonate. S. aureus SCVs would be resistant to high concentrations of LL-37 in niches where there are physiological concentrations of bicarbonate and therefore this AMP may not be effective in combating SCVs.