Skip to Content
Merck
All Photos(3)

Key Documents

652490

Sigma-Aldrich

Carbon nanotube, single-walled

carboxylic acid functionalized, >90% carbon basis,D × L 4-5 nm × 0.5-1.5 μm , bundle dimensions

Synonym(s):

SWNT, carboxylic acid functionalized

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352103
NACRES:
NA.23

product name

Carbon nanotube, single-walled, carboxylic acid functionalized, >90% carbon basis, D × L 4-5 nm × 0.5-1.5 μm , bundle dimensions, avg. no. of layers, 1

Assay

>90% carbon basis

form

powder

feature

avg. no. of layers 1

extent of labeling

1.0-3.0 atom% carboxylic acid

D × L

4-5 nm × 0.5-1.5 μm , bundle dimensions

impurities

5-8% metals

solubility

H2O: dispersible 0.1 mg/mL
DMF: dispersible 1.0 mg/mL

functional group

carboxylic acid

General description

Single walled nanotubes were prepared by the electric arc discharge method. The SWNTs were functionalized by purifying them in nitric acid. The carboxylic acid (-COOH) functionality along the length of the nanotube can be derivatized with a variety of functional groups. The average diameter of the nanotubes is 1.4nm ± 0.1nm. Transport properties of the SWNTs in soil was studied.

Application

Carboxylated SWNTs were used to modify an indium tin oxide (ITO) electrode towards the fabrication of a novel electrochemical immunosensor. Carboxylated SWNTs was further multifunctionalized and were used in studying the influence of attached chemical group on the sorption of pyrene conjugates of oligonucleotides. An electrochemical DNA biosensor was reportedly designed using functionalized SWNTs. It was used in the preparation of the chlorocarbonyl-functionalized SWNT. It was used to fabricate SWNTs/(Pb, Zn)-phosphate glass composite structure for the dual use as light sensor and photocurrent converter. Interaction of carboxylated SWNT with Caco-2 was investigated in detail.

Packaging

Packaged in glass bottles

Physical properties

The type of carboxylic group is: -COOH.

Preparation Note

Electric Arc Discharge Method

Analysis Note

Carbonaceous content

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Electrochemical immunosensor using the modification of an amine-functionalized indium tin oxide electrode with carboxylated single-walled carbon nanotubes.
Aziz, Md A and Yang H
Bull. Korean Chem. Soc., 28(7), 1171-1171 (2007)
Fluorecently labeled bionanotransporters of nucleic acid based on carbon nanotubes.
Novopashina, DS, et al.
ARKIVOC (Gainesville, FL, United States) (2012)
Optimization of the Ni-Y Composition in Bulk Electric Arc Synthesis of Single-Walled Carbon Nanotubes by Using Near-Infrared Spectroscopy
Itkis, M.E. et al.
The Journal of Physical Chemistry B, 108, 12770-12775 (2004)
Single-walled carbon nanotube/(Pb, Zn)-phosphate glass heterostructure: an optical sensor and efficient photocurrent converter
Balaji S, et al.
Journal of Physics D: Applied Physics, 45(32) (2012)
Dendron-tethered and templated CdS quantum dots on single-walled carbon nanotubes.
SH, et al.
Journal of the American Chemical Society, 128(23), 7505-7509 (2006)

Articles

Recent advancements in paper-based sensing platforms offer cost-effective clinical diagnostics with microfluidic channels and colorimetric or electrochemical detection zones.

Recent advancements in paper-based sensing platforms offer cost-effective clinical diagnostics with microfluidic channels and colorimetric or electrochemical detection zones.

Recent advancements in paper-based sensing platforms offer cost-effective clinical diagnostics with microfluidic channels and colorimetric or electrochemical detection zones.

Carbon nanotubes are materials that possess remarkable properties and offer extraordinary possibilities.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service