- Sterically Hindered Phosphonium Salts: Structure, Properties and Palladium Nanoparticle Stabilization.
Sterically Hindered Phosphonium Salts: Structure, Properties and Palladium Nanoparticle Stabilization.
Nanomaterials (Basel, Switzerland) (2020-12-16)
Daria M Arkhipova, Vadim V Ermolaev, Vasily A Miluykov, Aidar T Gubaidullin, Daut R Islamov, Olga N Kataeva, Valentine P Ananikov
PMID33316907
ABSTRACT
A new family of sterically hindered alkyl(tri-tert-butyl) phosphonium salts (n-CnH2n+1 with n = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) was synthesized and evaluated as stabilizers for the formation of palladium nanoparticles (PdNPs), and the prepared PdNPs, stabilized by a series of phosphonium salts, were applied as catalysts of the Suzuki cross-coupling reaction. All investigated phosphonium salts were found to be excellent stabilizers of metal nanoparticles of small catalytically active size with a narrow size distribution. In addition, palladium nanoparticles exhibited exceptional stability: the presence of phosphonium salts prevented agglomeration and precipitation during the catalytic reaction.