Skip to Content
Merck
  • Identification of Phf16 and Pnpla3 as new adipogenic factors regulated by phytochemicals.

Identification of Phf16 and Pnpla3 as new adipogenic factors regulated by phytochemicals.

Journal of cellular biochemistry (2018-10-03)
Seo-Hyuk Chang, Ui Jeong Yun, Jin Hee Choi, Suji Kim, A Reum Lee, Dong Ho Lee, Min-Ju Seo, Vanja Panic, Claudio J Villanueva, No-Joon Song, Kye Won Park
ABSTRACT

Adipocyte differentiation is controlled by multiple signaling pathways. To identify new adipogenic factors, C3H10T1/2 adipocytes were treated with previously known antiadipogenic phytochemicals (resveratrol, butein, sulfuretin, and fisetin) for 24 hours. Commonly regulated genes were then identified by transcriptional profiling analysis. Three genes (chemokine (C-X-C motif) ligand 1 [ Cxcl1], heme oxygenase 1 [ Hmox1], and PHD (plant homeo domain) finger protein 16 [ Phf16]) were upregulated while two genes (G0/G1 switch gene 2 [ G0s2] and patatin-like phospholipase domain containing 3 [ Pnpla3]) were downregulated by these four antiadipogenic compounds. Tissue expression profiles showed that the G0s2 and Pnpla3 expressions were highly specific to adipose depots while the other three induced genes were ubiquitously expressed with significantly higher expression in adipose tissues. While Cxcl1 expression was decreased, expressions of the other four genes were significantly increased during adipogenic differentiation of C3H10T1/2 cells. Small interfering RNA-mediated knockdown including Phf16 and Pnpla3 indicated that these genes might play regulatory roles in lipid accumulation and adipocyte differentiation. Specifically, the silencing of two newly identified adipogenic genes, Phf16 or Pnpla3, suppressed lipid accumulation and expression of adipocyte markers in both 3T3-L1 and C3H10T1/2 cells. Taken together, these data showed previously uncovered roles of Phf16 and Pnpla3 in adipogenesis, highlighting the potential of using phytochemicals for further investigation of adipocyte biology.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
GW1929 hydrate, >98% (HPLC), solid