Skip to Content
Merck
  • Interleukin-27, a novel cytokine induced by ischemia-reperfusion injury in rat hearts, mediates cardioprotective effects via the gp130/STAT3 pathway.

Interleukin-27, a novel cytokine induced by ischemia-reperfusion injury in rat hearts, mediates cardioprotective effects via the gp130/STAT3 pathway.

Basic research in cardiology (2015-03-31)
Ming-Chieh Ma, Bao-Wei Wang, Tzu-Pei Yeh, Jia-Long Wu, Tun-Hui Chung, Kochung Tsui, Chih-Fan Chiang, Ai-Ju Huang, Yu-Tzu Huang
ABSTRACT

Patients with coronary artery disease show high serum levels of interleukin (IL)-27, a novel member of the IL-6 family. However, the function of IL-27 in hearts suffering ischemia/reperfusion (IR) injury is unclear. Here, we showed increased expression of mRNA for the IL-27 subunits, EBI3 and p28, in rat hearts after 40 min of coronary ligation and release for 7 days. This increase was associated with a peak in the release of the cardiac enzyme, creatine kinase-MB, on day 2 post-release. Moreover, levels of IL-27 receptor subunit gp130 mRNA, but not those of subunit WSX-1 mRNA, decreased in post-ischemic hearts. These results suggest that increased IL-27 production may compensate for receptor downregulation during myocardial recovery. Lactate dehydrogenase release and crystal violet staining revealed that IL-27 or IL-6 significantly attenuated severe hypoxia (SH, 2 % O2)-induced cell damage in H9c2 cardiomyoblasts and primary rat neonatal cardiomyocytes. Incubating cardiomyocytes with IL-27 or IL-6 resulted in time-dependent activation of signal transducers and activators of transcription 3 (STAT3). Interestingly, IL-27-induced STAT3 activation was attenuated by pre-treatment with a gp130-neutralizing antibody. Blocking gp130 also reduced the cytoprotective effects of IL-27 or IL-6. Moreover, IL-27-mediated protection against SH was blocked by stattic, a small-molecule inhibitor of STAT3. IL-27 markedly improved post-ischemic recovery and reduced tissue damage in isolated perfused hearts when administered 5 min before reperfusion. These results indicate that IL-27 protects the myocardium against IR injury and facilitates the recovery of damaged cardiomyocytes via the gp130/STAT3 pathway.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
SAFC
L-Glutamine
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
IL-17D human, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture