Skip to Content
Merck
  • A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel.

A strain-absorbing design for tissue-machine interfaces using a tunable adhesive gel.

Nature communications (2014-12-20)
Sungwon Lee, Yusuke Inoue, Dongmin Kim, Amir Reuveny, Kazunori Kuribara, Tomoyuki Yokota, Jonathan Reeder, Masaki Sekino, Tsuyoshi Sekitani, Yusuke Abe, Takao Someya
ABSTRACT

To measure electrophysiological signals from the human body, it is essential to establish stable, gentle and nonallergic contacts between the targeted biological tissue and the electrical probes. However, it is difficult to form a stable interface between the two for long periods, especially when the surface of the biological tissue is wet and/or the tissue exhibits motion. Here we resolve this difficulty by designing and fabricating smart, stress-absorbing electronic devices that can adhere to wet and complex tissue surfaces and allow for reliable, long-term measurements of vital signals. We demonstrate a multielectrode array, which can be attached to the surface of a rat heart, resulting in good conformal contact for more than 3 h. Furthermore, we demonstrate arrays of highly sensitive, stretchable strain sensors using a similar design. Ultra-flexible electronics with enhanced adhesion to tissue could enable future applications in chronic in vivo monitoring of biological signals.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Ethyl-3-methylimidazolium tetrafluoroborate, ≥98% (HPLC)
Sigma-Aldrich
1-Ethyl-3-methylimidazolium tetrafluoroborate, ≥97.0% (HPLC/T)
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
1-Ethyl-3-methylimidazolium tetrafluoroborate, for electrochemistry, ≥99.0% (HPLC)