Skip to Content
Merck
  • Concentration selective hydration and phase states of hydroxyethyl cellulose (HEC) in aqueous solutions.

Concentration selective hydration and phase states of hydroxyethyl cellulose (HEC) in aqueous solutions.

International journal of biological macromolecules (2011-12-14)
Najmul Arfin, H B Bohidar
ABSTRACT

Solution behaviour of hydroxyethyl cellulose (HEC) is reported in the polymer concentration range spanning over two decades (c=0.002-5% (w/v)). The results conclude the following: (i) dilute solution regime prevailed for c<0.2% (w/v), flexible HEC fibres of typical length ≈ 1 μm and persistence length ≈ 10 nm were found here, (ii) for 0.2<c<1% (w/v), a semidilute phase comprising soluble aggregates of hydrated HEC fibrils were observed with the material exhibiting viscoelastic behaviour and (iii) when 1<c<5% (w/v) the solution behaved with melt-like attributes with substantial embedded heterogeneity; viscous to elastic transition was observed in this region. Raman spectral, and DSC data indicated distinctive hydration of HEC fibres in the aforesaid concentration regimes. Cole-Cole plots revealed phase homogeneity and miscibility was limited to concentrations less than ~2% (w/v). For higher polymer concentrations, strong fibre-fibre interactions prevailed and samples became heterogeneous.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydroxyethyl-cellulose, viscosity 90-160 cP, 5 % in H2O(25 °C)
Sigma-Aldrich
Hydroxyethyl-cellulose
Sigma-Aldrich
2-Hydroxyethyl cellulose, average Mv ~90,000
Sigma-Aldrich
2-Hydroxyethyl cellulose, average Mv ~1,300,000
Sigma-Aldrich
2-Hydroxyethyl cellulose, average Mv ~720,000
Sigma-Aldrich
2-Hydroxyethyl cellulose, average Mw ~380,000