Skip to Content
Merck
  • Quantification of Synthetic Polyesters from Biodegradable Mulch Films in Soils.

Quantification of Synthetic Polyesters from Biodegradable Mulch Films in Soils.

Environmental science & technology (2019-11-19)
Taylor F Nelson, Stephanie C Remke, Hans-Peter E Kohler, Kristopher McNeill, Michael Sander
ABSTRACT

Soil biodegradable mulch films composed of the polyester polybutylene adipate-co-terephthalate (PBAT) are being increasingly used in agriculture. Analytical methods to quantify PBAT in field soils are needed to assess its soil occurrence and fate. Here, we report an analytical method for PBAT in soils that couples Soxhlet extraction or accelerated solvent extraction (ASE) with quantitative protonnuclear magnetic resonance (q-1H NMR) spectroscopy detection. The 1H NMR peak areas of aromatic PBAT protons increased linearly with PBAT concentrations dissolved in deuterated chloroform (CDCl3), demonstrating accurate quantitation of PBAT by q-1H NMR. Spike-recovery experiments involving PBAT addition to model sorbents and soils showed increased PBAT extraction efficiencies into chloroform (CHCl3) with methanol (MeOH) as cosolvent, consistent with MeOH competitively displacing PBAT from H-bond donating sites on mineral surfaces. Systematic variations in solvent composition and temperatures in ASE revealed quantitative PBAT extraction from soil with 90/10 volume % CHCl3/MeOH at 110-120 °C. Both Soxhlet extraction and ASE resulted in the complete recovery of PBAT added to a total of seven agricultural soils covering a range of physicochemical properties, independent of whether PBAT was added to soils dissolved in CHCl3, as film, or as particles. Recovery was also complete for PBAT added to soil in the form of a commercial soil biodegradable mulch film with coextractable polylactic acid (PLA). The presented analytical method enables accurate quantification and biodegradation monitoring of PBAT in agricultural field soils.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Goethite, 30-63% Fe