Skip to Content
Merck
  • Transplantation of MHC-mismatched mouse embryonic stem cell-derived thymic epithelial progenitors and MHC-matched bone marrow prevents autoimmune diabetes.

Transplantation of MHC-mismatched mouse embryonic stem cell-derived thymic epithelial progenitors and MHC-matched bone marrow prevents autoimmune diabetes.

Stem cell research & therapy (2019-08-08)
Min Su, Yujun Lin, Zhixu He, Laijun Lai
ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease resulting from the destruction of insulin-secreting islet β cells by autoreactive T cells. Non-obese diabetic (NOD) mice are the widely used animal model for human T1D. Autoimmunity in NOD mice is associated with particular major histocompatibility complex (MHC) loci and impaired islet autoantigen expression and/or presentation in the thymus, which results in defects in both central and peripheral tolerance. It has been reported that induction of mixed chimerism with MHC-mismatched, but not MHC-matched donor bone marrow (BM) transplants prevents the development T1D in NOD mice. We have reported that mouse embryonic stem cells (mESCs) can be selectively induced in vitro to generate thymic epithelial progenitors (TEPs) that further develop into thymic epithelial cells (TECs) in vivo to support T cell development. To determine whether transplantation of MHC-mismatched mESC-TEPs could prevent the development of insulitis and T1D, NOD mice were conditioned and injected with MHC-mismatched B6 mESC-TEPs and MHC-matched BM from H-2g7 B6 mice. The mice were monitored for T1D development. The pancreas, spleen, BM, and thymus were then harvested from the mice for evaluation of T1D, insulitis, chimerism levels, and T cells. Transplantation of MHC-mismatched mESC-TEPs and MHC-matched donor BM prevented insulitis and T1D development in NOD mice. This was associated with higher expression of proinsulin 2, a key islet autoantigen in the mESC-TECs, and an increased number of regulatory T cells. Our results suggest that embryonic stem cell-derived TEPs may offer a new approach to control T1D.