Skip to Content
Merck
  • COSMC is overexpressed in proliferating infantile hemangioma and enhances endothelial cell growth via VEGFR2.

COSMC is overexpressed in proliferating infantile hemangioma and enhances endothelial cell growth via VEGFR2.

PloS one (2013-02-21)
Jian Lee, Chia-Hua Chen, Ya-Hsin Chen, Miao-Juei Huang, John Huang, Ji-Shiang Hung, Ming-Ting Chen, Min-Chuan Huang
ABSTRACT

Infantile hemangiomas are localized lesions comprised primarily of aberrant endothelial cells. COSMC plays a crucial role in blood vessel formation and is characterized as a molecular chaperone of T-synthase which catalyzes the synthesis of T antigen (Galβ1,3GalNAc). T antigen expression is associated with tumor malignancy in many cancers. However, roles of COSMC in infantile hemangioma are still unclear. In this study, immunohistochemistry showed that COSMC was upregulated in proliferating hemangiomas compared with involuted hemangiomas. Higher levels of T antigen expression were also observed in the proliferating hemangioma. Overexpression of COSMC significantly enhanced cell growth and phosphorylation of AKT and ERK in human umbilical vein endothelial cells (HUVECs). Conversely, knockdown of COSMC with siRNA inhibited endothelial cell growth. Mechanistic investigation showed that O-glycans were present on VEGFR2 and these structures were modulated by COSMC. Furthermore, VEGFR2 degradation was delayed by COSMC overexpression and facilitated by COSMC knockdown. We also showed that COSMC was able to regulate VEGF-triggered phosphorylation of VEGFR2. Our results suggest that COSMC is a novel regulator for VEGFR2 signaling in endothelial cells and dysregulation of COSMC expression may contribute to the pathogenesis of hemangioma.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
PD 98059, PD 98059, CAS 167869-21-8, is a cell-permeable, selective & reversible inhibitor of MAP Kinase Kinase (MEK). Inhibits MAP Kinase activation and subsequent phosphorylation of MAP Kinase substrates.
Sigma-Aldrich
Cycloheximide, from microbial, ≥94% (TLC)
Sigma-Aldrich
MISSION® esiRNA, targeting human C1GALT1C1
Sigma-Aldrich
LY 294002, LY294002, CAS 154447-36-6, is a cell-permeable, potent, reversible, and specific inhibitor of PI 3-kinase ((IC₅₀ = 1.4 µM). Acts on the ATP-binding site.