- In Situ Growth of Prussian Blue Nanostructures at Reduced Graphene Oxide as a Modified Platinum Electrode for Synergistic Methanol Oxidation.
In Situ Growth of Prussian Blue Nanostructures at Reduced Graphene Oxide as a Modified Platinum Electrode for Synergistic Methanol Oxidation.
Herein, we report a facile synthetic strategy for the in situ growth of Prussian blue nanostructures (PB NSs) at the amine-functionalized silicate sol-gel matrix (TPDT)-RGO composite via the electrostatic interaction. Subsequently, Pt nanostructures are electrodeposited onto the preformed ITO/TPDT-RGO-PB electrode to prepare the RGO/PB/Pt catalyst. The significance of the present method is that the PB NSs are in situ grown by interconnecting the RGO layers, leading to 3D cage-like porous nanostructure. The modified electrodes are characterized by FESEM, EDAX, XRD, XPS, and electrochemical techniques. The RGO/PB/Pt catalyst exhibits synergistic electrocatalytic activity and high stability toward methanol oxidation. The porous nature of the TPDT and PB and unique electron-transfer mediating behavior of PB integrated with RGO in the presence of Pt nanostructures facilitated synergistic electrocatalytic activity for methanol oxidation.