- Interactional behavior of the polyelectrolyte poly sodium 4-styrene sulphonate (NaPSS) with imidazolium based surface active ionic liquids in an aqueous medium.
Interactional behavior of the polyelectrolyte poly sodium 4-styrene sulphonate (NaPSS) with imidazolium based surface active ionic liquids in an aqueous medium.
The present study aims to develop an understanding of the interactions between an anionic polyelectrolyte, poly sodium 4-styrene sulphonate (NaPSS), and cationic surface active imidazolium based ionic liquids (SAILs), [Cnmim][Cl] (n = 10, 12, 14) using a multi-technique approach. Various physicochemical and electrochemical techniques such as surface tension, conductivity, fluorescence, isothermal titration calorimetry (ITC), dynamic light scattering (DLS), turbidity, potentiometry, cyclic voltammetry (CV), and differential pulse voltammetry (DPV) are employed to obtain comprehensive information about NaPSS-SAIL interactions. Different stages of interaction, corresponding to the critical aggregation concentration (cac), critical saturation concentration (Cs) and critical micelle concentration (cmc) have been observed owing to the strong electrostatic and hydrophobic interactions, and the results obtained from different techniques complement each other very well. The results extracted from DLS and turbidity measurements clearly indicated that the size of the micelle like aggregates first decreases and then increases in the presence of polyelectrolyte. The binding isotherms obtained using potentiometry show a concentration dependence and the highly co-operative nature of the interactions which is attributed to aggregation of the polyelectrolyte-SAIL complexes. The diffusion coefficients (Dm) of the electroactive probe in the pure and NaPSS-SAIL mixed systems were obtained, which were further used to obtain the values of the micellar self-diffusion coefficients (D) and inter-micellar interaction parameters (kd).