Skip to Content
Merck
  • Embryonic Stem Cell-Related Protein L1TD1 Is Required for Cell Viability, Neurosphere Formation, and Chemoresistance in Medulloblastoma.

Embryonic Stem Cell-Related Protein L1TD1 Is Required for Cell Viability, Neurosphere Formation, and Chemoresistance in Medulloblastoma.

Stem cells and development (2015-07-15)
Márcia Cristina Teixeira Santos, Patrícia Benites Gonçalves Silva, Carolina Oliveira Rodini, Gabriela Furukawa, David Santos Marco Antonio, Alfeu Zanotto-Filho, José C F Moreira, Oswaldo Keith Okamoto
ABSTRACT

Misexpression of stem cell-related genes may occur in some cancer cells, influencing patient's prognosis. This is the case of medulloblastoma, a common and clinically challenging malignant tumor of the central nervous system, where expression of the pluripotency factor, OCT4, is correlated with poor survival. A downstream target of OCT4, L1TD1 (LINE-1 type transposase domain-containing protein 1 family member), encodes a novel embryonic stem cell (ESC)-related protein involved in pluripotency and self-renewal of ESCs. L1TD1 is still poorly characterized and its expression pattern and function in cancer cells are virtually unknown. Although normally restricted to non-neoplastic undifferentiated cells and germ cells, we found that high L1TD1 expression also occurs in medulloblastoma cells, reaching levels similar to those found in ESCs, and is correlated with poor prognosis. Conversely to what is reported during normal cell differentiation, when differentiated cells remain healthy, despite L1TD1 downregulation, depletion of L1TD1 protein levels by targeted gene silencing significantly reduced medulloblastoma cell viability, inhibiting cell proliferation and inducing apoptosis. More strikingly, L1TD1 depletion downregulated expression of the neural stem cell markers, CD133 and Nestin, inhibited neurosphere generation capability, and sensitized medulloblastoma cells to temozolomide and cisplatin, two chemotherapeutic agents of clinical relevance in medulloblastoma treatment. Our findings provide insights about the contribution of pluripotency-related genes to a more aggressive tumor phenotype through their involvement in the acquisition of stem-like properties by cancer cells and point out L1TD1 as a potential therapeutic target in malignant brain tumors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
2-Phenylindole, technical grade, 95%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, anhydrous, ≥99.5%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, LR, ≥99%
Sigma-Aldrich
Methanol, AR, ≥99.5%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Methanol solution, (Methanol:Dimethyl sulfoxide 1:1 (v/v))
Sigma-Aldrich
Methanol solution, contains 0.50 % (v/v) triethylamine
Sigma-Aldrich
MISSION® esiRNA, targeting human L1TD1
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.