Skip to Content
Merck
  • Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA.

Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA.

Chemosphere (2011-01-11)
Jonathan D Byer, John Struger, Ed Sverko, Paul Klawunn, Aaron Todd
ABSTRACT

Concerns regarding the impacts of pesticides on aquatic species and drinking water sources have increased demands on water quality monitoring programs; however the costs of sample analysis can be prohibitive. In this study we investigated enzyme-linked immunosorbent assay (ELISA) as a cost-effective, high through-put method for measuring pesticide concentrations in surface waters. Seven hundred and thirty-nine samples from 158 locations throughout Ontario were analysed for atrazine and metolachlor from April to October 2007. Concentrations ranged from <0.1 to 3.91 μg L(-1) (median=0.12 μg L(-1)) for atrazine and from <0.1 to 1.83 μg L(-1) (median=0.09 μg L(-1)) for metolachlor. Peak concentrations occurred in late spring/early summer, in rural agricultural locations, and decreased over the remainder of the growing season for both herbicides. About 3% of the samples that had ELISA results occurring above the limit of quantification (0.10 μg L(-1)) were evaluated against gas chromatography-mass spectrometry (GC-MS). Linear regression analysis revealed a R(2) value of 0.88 and 0.39, for atrazine and metolachlor, respectively. ELISA tended to overestimate concentrations for atrazine and metolachlor, most likely because the ELISA kits also detect their metabolites. Atrazine data suggest that ELISA may be used complementary with GC-MS analysis to enhance the spatial and temporal resolution of a water quality monitoring study. The commercially available metolachlor ELISA kit requires further investigation. ELISA may be used to detect atrazine and metolachlor in surface water samples, but it is not recommended as a quantitative replacement for traditional analytical methods.