Skip to Content
Merck
  • S 23521 decreases food intake and body weight gain in diet-induced obese rats.

S 23521 decreases food intake and body weight gain in diet-induced obese rats.

Obesity research (2004-11-13)
Marc Claret, Helena Corominola, Ignasi Canals, Belén Nadal, Alain Chavanieu, Bruno Pfeiffer, Pierre Renard, Carmen Gorostiaga, Philippe Delagrange, Gérard Grassy, Ramon Gomis
ABSTRACT

To investigate the effect of S 23521, a new glucagon-like peptide-1-(7-36) amide analogue, on food intake and body weight gain in obese rats, as well as on gene expression of several proteins involved in energy homeostasis. Lean and diet-induced obese rats were treated with either S 23521 or vehicle. S 23521 was given either intraperitoneally (10 or 100 microg/kg) or subcutaneously (100 microg/kg) for 14 and 20 days, respectively. Because the low-dose treatment did not affect food intake and body weight, the subcutaneous treatment at high dose was selected to test the effect on selected end-points. Treated obese rats significantly decreased their cumulative energy intake in relation to vehicle-treated counterparts (3401 +/- 65 vs. 3898 +/- 72 kcal/kg per 20 days; p < 0.05). Moreover, their body weight gain was reduced by 110%, adiposity was reduced by 20%, and plasma triglyceride levels were reduced by 38%. The treatment also improved glucose tolerance and insulin sensitivity of obese rats. Regarding gene expression, no changes in uncoupling protein-1, uncoupling protein-3, leptin, resistin, and peroxisome proliferator-activated receptor (PPAR)-gamma were observed. S 23521 is an effective glucagon-like peptide-1-(7-36) amide analogue, which induced a decrease in energy intake, body weight, and adiposity in a rat model of diet-induced obesity. In addition, the treatment also improved glucose tolerance and insulin sensitivity of obese rats. These results strongly support S 23521 as a putative molecule for the treatment of obesity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glucagon-Like Peptide I Amide Fragment 7-36 human, ≥97% (HPLC), powder