Skip to Content
Merck
  • Plasmin-mediated activation of pandemic H1N1 influenza virus hemagglutinin is independent of the viral neuraminidase.

Plasmin-mediated activation of pandemic H1N1 influenza virus hemagglutinin is independent of the viral neuraminidase.

Journal of virology (2013-03-02)
Longping V Tse, Valerie C Marcano, Weishan Huang, Misty S Pocwierz, Gary R Whittaker
ABSTRACT

Influenza virus is well recognized to modulate host tropism and pathogenesis based on mutations in the proteolytic cleavage site of the viral hemagglutinin (HA), which activates HA and exposes the fusion peptide for membrane fusion. Instead of the conventional trypsin-mediated cleavage event, modification of the cleavage site allows extended use of host cell proteases and enhanced spread in vivo. For H1N1 influenza viruses, the mouse-adapted A/WSN/33 strain is known to replicate in the brain based on recruitment of plasminogen by the viral neuraminidase (NA), as well as a Ser-Tyr substitution at the P2 position of the HA cleavage site. Here, we show that an equivalent Ser-Tyr substitution has occurred in the HA of naturally occurring human H1N1 influenza viruses. We characterize one of these viruses (A/Beijing/718/2009), as well as the prototype A/California/04/2009 with a Ser-Tyr substitution in the cleavage site, and show that these HAs are preferentially cleaved by plasmin. Importantly, cleavage activation by plasmin/plasminogen was independent of the viral NA, suggesting a novel mechanism for HA cleavage activation. We show that the viral HA itself can recruit plasminogen for HA cleavage. We further show that cellular factors, as well as streptokinase from bacteria commonly coinfecting the respiratory tract of influenza patients, can be a source of activated plasminogen for plasmin-mediated cleavage of influenza virus HAs that contain a Ser-Tyr substitution in the cleavage site.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Neuraminidase from Clostridium perfringens (C. welchii), Type X, lyophilized powder, ≥50 units/mg protein (using 4MU-NANA)
Sigma-Aldrich
Neuraminidase from Clostridium perfringens (C. welchii), Type VIII, lyophilized powder, 10-20 units/mg protein (using 4MU-NANA), 3.5-8.0 units/mg protein (mucin)
Sigma-Aldrich
α(2→3) Neuraminidase from Streptococcus pneumoniae, buffered aqueous solution
Sigma-Aldrich
α(2→3,6) Neuraminidase from Clostridium perfringens (C. welchii), recombinant, expressed in E. coli, buffered aqueous solution, ≥250 units/mg protein
Sigma-Aldrich
Plasmin from human plasma, lyophilized powder, ≥2.0 units/mg protein
Sigma-Aldrich
Neuraminidase Agarose from Clostridium perfringens (C. welchii), Type VI-A, ammonium sulfate suspension
Sigma-Aldrich
Neuraminidase from Clostridium perfringens (C. welchii), Suitable for manufacturing of diagnostic kits and reagents, Type V, lyophilized powder
Sigma-Aldrich
Neuraminidase from Clostridium perfringens (C. welchii), Type VI, lyophilized powder, 6-15 units/mg protein (using 4MU-NANA), 2-10 units/mg protein (mucin)
Sigma-Aldrich
α(2→3,6,8,9) Neuraminidase from Arthrobacter ureafaciens, Proteomics Grade, suitable for MALDI-TOF MS
Sigma-Aldrich
Neuraminidase from Vibrio cholerae, ≥1.5 U/mL, specific activity ≥ 1.5U/mg protein
Sigma-Aldrich
Neuraminidase from Vibrio cholerae, Type III, buffered aqueous solution, 0.2 μm filtered, 1-5 units/mg protein (Lowry, using NAN-lactose)
Sigma-Aldrich
α(2→3,6,8,9) Neuraminidase from Arthrobacter ureafaciens, recombinant, expressed in E. coli, buffered aqueous solution
Sigma-Aldrich
Neuraminidase from Vibrio cholerae, Type II, buffered aqueous solution, 8-24 units/mg protein (Lowry, using NAN-lactose)