- Fabrication of a polymeric ionic liquid-based adsorbent for multiple monolithic fiber solid-phase microextraction of endocrine disrupting chemicals in complicated samples.
Fabrication of a polymeric ionic liquid-based adsorbent for multiple monolithic fiber solid-phase microextraction of endocrine disrupting chemicals in complicated samples.
A multiple monolithic fiber solid-phase microextraction (MMF-SPME) utilizing polymeric ionic liquid-based adsorbent was prepared. The adsorbent was obtained by in situ copolymerization of an ionic liquid, 1-trimethyl-(4-vinylbenzyl) aminium chloride and dual cross-linkers (divinylbenzene and ethylenedimethacrylate). The effect of preparation conditions including the content of ionic liquid and porogen in the polymerization mixture on extraction performance was studied in detail. Infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry were used to inspect the physicochemical properties of the new adsorbent. The applicability of the new MMF-SPME was demonstrated by the extraction of trace endocrine disrupting chemicals (EDCs). Results indicated that the prepared MMF-SPME could extract EDCs effectively through multi-interactions such as ion-exchange, π-π and hydrophobic interactions. After optimization of extraction parameters, a method of MMF-SPME coupled to high performance liquid chromatography/diode array detection was conducted to detect trace EDCs in complicated samples including environmental water and human urine. The limits of detection (S/N=3) and quantification (S/N=10) for targeted compounds were 0.011-0.065μg/L and 0.036-0.21μg/L, respectively. Satisfactory precision was also achieved by evaluating the repeatability and intermediate precision with relative standard deviations (RSDs) of less than 9% and 10%, respectively. At the same time, the proposed method was successfully applied for the determination of EDCs in water and human urine with spiking recoveries ranged from 70.6% to 119%.