Skip to Content
Merck
  • Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast.

Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast.

Toxicology in vitro : an international journal published in association with BIBRA (2015-06-02)
Leonardo P Franchi, Bella B Manshian, Tiago A J de Souza, Stefaan J Soenen, Elaine Y Matsubara, J Mauricio Rosolen, Catarina S Takahashi
ABSTRACT

Metallic nanoparticles such as silver (Ag), cerium dioxide (CeO2) and titanium dioxide (TiO2) are produced at a large scale and included in many consumer products. It is well known that most metallic NPs are toxic to humans which raise concerns about these engineered particles. Various studies have already been published on the subject, however, almost all of these studies have been conducted in cancer or transformed cell lines. In this work we performed a comparative evaluation of these metallic NPs on normal untransformed human fibroblasts (GM07492) detecting cyto- and geno-toxic responses after exposure to these NPs. Our results showed that all three metallic NPs were able to cross the plasma membrane and were mainly found in endocytic vesicles. The Ag and TiO2 NPs affected mitochondrial enzymatic activity (XTT), increased DNA fragmentation, oxidative damage (Comet assay) and induced cell death mainly by the apoptotic pathway. Ag NPs increased GADD45α transcript levels and the phosphorylation of proteins γH2AX. Transient genotoxicity was also observed from exposure to CeO2 NPs while TiO2 NPs showed no increase in DNA damage at sub-cytotoxic concentrations. In comparison, Ag NPs were found to be the most cyto-genotoxic NPs to fibroblasts. Thus, these results support the use of normal fibroblast as a more informative tool to detect the mechanisms of action induced by metallic NPs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Potassium bromide, anhydrous, powder, 99.95% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Potassium bromide, anhydrous, powder, 99.999% trace metals basis
Sigma-Aldrich
Potassium bromide, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Potassium bromide, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
BIS-TRIS, BioXtra, ≥98.0% (titration)