Skip to Content
Merck
  • Relationship between peptide structure and antimicrobial activity as studied by de novo designed peptides.

Relationship between peptide structure and antimicrobial activity as studied by de novo designed peptides.

Biochimica et biophysica acta (2014-08-27)
Jianbo Sun, Yuqiong Xia, Dong Li, Quan Du, Dehai Liang
ABSTRACT

As fundamental components in innate immunity, antimicrobial peptides (AMPs) hold great potentials in the treatment of persistent infections involving slow-growing or dormant bacteria in which, selective inhibition of prokaryotic bacteria in the context of eukaryotic cells is not only an essential requirement, but also a critical challenge in the development of antimicrobial peptides. To identify the sequence and structural properties critical for antimicrobial activity, a series of peptides varying in sequence, length, hydrophobicity/charge ratio, and secondary structure, were designed and synthesized. Their antimicrobial activities were then tested using Escherichia coli and HEK293 cells, together with several index activities against model membrane, including liposome leakage, fusion, and aggregation. While no evident correlation between the antimicrobial activity and the property of the peptides was observed, common activities against model membrane were nevertheless identified for the active antimicrobial peptides: mediating efficient membrane leakage, negligible membrane fusion and liposome aggregation. Therefore, in addition to identifying one highly active antimicrobial peptide, our study further sheds light on the design principle for these molecules.

MATERIALS
Product Number
Brand
Product Description

Supelco
2,6-Pyridinedicarboxylic acid concentrate, 0.02 M C7H5NO4 in water (0.04N), suitable for ion chromatography, eluent concentrate
Supelco
2,6-Pyridinedicarboxylic acid, suitable for ion chromatography, ≥99.5% (T)
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
2,6-Pyridinedicarboxylic acid, 99%
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Supelco
Chloroform, analytical standard
Sigma-Aldrich
Chloroform, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Supelco
Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine, semisynthetic, ≥99%
Sigma-Aldrich
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine, ≥99% (TLC)
Supelco
Residual Solvent - Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material